|
8 | 8 | #include <QGraphicsScene> |
9 | 9 | #include <QImage> |
10 | 10 | #include <QPainter> |
| 11 | +#include <random> |
| 12 | +#include <array> |
11 | 13 |
|
12 | 14 | PixelateTool::PixelateTool(QObject* parent) |
13 | 15 | : AbstractTwoPointTool(parent) |
@@ -51,40 +53,144 @@ CaptureTool* PixelateTool::copy(QObject* parent) |
51 | 53 | return tool; |
52 | 54 | } |
53 | 55 |
|
| 56 | +/** |
| 57 | + * Since pixelation does not protect the contents of the pixelated area |
| 58 | + * (see e.g. https://github.com/bishopfox/unredacter), |
| 59 | + * _pseudo-pixelation_ is used: |
| 60 | + * |
| 61 | + * Only colors from the fringe of the selected area are used to generate |
| 62 | + * a pixelation-like effect. The interior of the selected area is not used |
| 63 | + * as an input at all and hence can not be recovered. |
| 64 | + * |
| 65 | + */ |
54 | 66 | void PixelateTool::process(QPainter& painter, const QPixmap& pixmap) |
55 | 67 | { |
56 | 68 | QRect selection = boundingRect().intersected(pixmap.rect()); |
57 | 69 | auto pixelRatio = pixmap.devicePixelRatio(); |
58 | 70 | QRect selectionScaled = QRect(selection.topLeft() * pixelRatio, |
59 | 71 | selection.bottomRight() * pixelRatio); |
60 | 72 |
|
61 | | - // If thickness is less than 1, use old blur process |
62 | | - if (size() <= 1) { |
63 | | - auto* blur = new QGraphicsBlurEffect; |
64 | | - blur->setBlurRadius(10); |
65 | | - auto* item = new QGraphicsPixmapItem(pixmap.copy(selectionScaled)); |
66 | | - item->setGraphicsEffect(blur); |
67 | | - |
68 | | - QGraphicsScene scene; |
69 | | - scene.addItem(item); |
70 | | - |
71 | | - scene.render(&painter, selection, QRectF()); |
72 | | - blur->setBlurRadius(12); |
73 | | - // multiple repeat for make blur effect stronger |
74 | | - scene.render(&painter, selection, QRectF()); |
75 | | - |
76 | | - } else { |
77 | | - int width = |
78 | | - static_cast<int>(selection.width() * (0.5 / qMax(1, size() + 1))); |
79 | | - int height = |
80 | | - static_cast<int>(selection.height() * (0.5 / qMax(1, size() + 1))); |
81 | | - QSize size = QSize(qMax(width, 1), qMax(height, 1)); |
82 | | - |
83 | | - QPixmap t = pixmap.copy(selectionScaled); |
84 | | - t = t.scaled(size, Qt::IgnoreAspectRatio, Qt::SmoothTransformation); |
85 | | - t = t.scaled(selection.width(), selection.height()); |
86 | | - painter.drawImage(selection, t.toImage()); |
| 73 | + |
| 74 | + // calculate the size of the pixelation effect using the tool size |
| 75 | + int width = qMax(1, |
| 76 | + static_cast<int>(selection.width() * (0.5 / qMax(1, size() + 1)))); |
| 77 | + int height = qMax(1, |
| 78 | + static_cast<int>(selection.height() * (0.5 / qMax(1, size() + 1)))); |
| 79 | + |
| 80 | + QSize effect_size = QSize(width, height); |
| 81 | + |
| 82 | + |
| 83 | + // the PRNG is only used for visual effects and NOT part of the security |
| 84 | + // boundary |
| 85 | + std::mt19937 prng(42); |
| 86 | + |
| 87 | + // noise for the sampling process to avoid only sampling from a small |
| 88 | + // subset of the fringe |
| 89 | + std::normal_distribution<float> sampling_noise(0, 5 * size() + 1); |
| 90 | + |
| 91 | + // additional noise that will be added on top of the effect to avoid |
| 92 | + // generating a monochromatic box when the fringe is monochromatic |
| 93 | + std::normal_distribution<float> noise(0, 0.1f); |
| 94 | + |
| 95 | + |
| 96 | + QPoint offset_top |
| 97 | + (0, selectionScaled.topLeft().y() == 0 ? 0 : -1); |
| 98 | + QPoint offset_bottom |
| 99 | + (0, selectionScaled.bottomLeft().y() == pixmap.rect().bottomLeft().y() ? 0 : 1); |
| 100 | + QPoint offset_left |
| 101 | + (selectionScaled.topLeft().x() == 0 ? 0 : -1,0); |
| 102 | + QPoint offset_right |
| 103 | + (selectionScaled.topRight().x() == pixmap.rect().topRight().x() ? 0 : 1,0); |
| 104 | + |
| 105 | + // only values from the fringe will be used to compute the pseudo-pixelation |
| 106 | + std::array<QImage, 4> fringe = { |
| 107 | + // top fringe |
| 108 | + pixmap.copy(QRect(selectionScaled.topLeft() + offset_top, |
| 109 | + selectionScaled.topRight() + offset_top)) |
| 110 | + .toImage(), |
| 111 | + // bottom fringe |
| 112 | + pixmap.copy(QRect(selectionScaled.bottomLeft() + offset_bottom, |
| 113 | + selectionScaled.bottomRight() + offset_bottom)) |
| 114 | + .toImage(), |
| 115 | + // left fringe |
| 116 | + pixmap.copy(QRect(selectionScaled.topLeft() + offset_left, |
| 117 | + selectionScaled.bottomLeft() + offset_left)) |
| 118 | + .toImage(), |
| 119 | + // right fringe |
| 120 | + pixmap.copy(QRect(selectionScaled.topRight() + offset_right, |
| 121 | + selectionScaled.bottomRight() + offset_right)) |
| 122 | + .toImage() |
| 123 | + }; |
| 124 | + |
| 125 | + |
| 126 | + // Image where the pseudo-pixelation is calculated. |
| 127 | + // This will later be scaled to cover the selected area. |
| 128 | + QImage pixelated = QImage(effect_size, QImage::Format_RGB32); |
| 129 | + |
| 130 | + |
| 131 | + // For every pixel of the effect, we consider four projections |
| 132 | + // to the fringe and sample a pixel from there. |
| 133 | + // Then a horizontal and vertical interpolation are calculated. |
| 134 | + std::array<std::array<float, 3>, 4> samples; |
| 135 | + |
| 136 | + for (int x = 0; x < width; ++x) { |
| 137 | + for (int y = 0; y < height; ++y) { |
| 138 | + float n = noise(prng); |
| 139 | + |
| 140 | + // relative horizontal resp. vertical position |
| 141 | + float horizontal = x / (float) width; |
| 142 | + float vertical = y / (float) height; |
| 143 | + |
| 144 | + for (int i = 0; i < 4; ++i) { |
| 145 | + QColor c = fringe[i].pixel( |
| 146 | + std::clamp( |
| 147 | + static_cast<int>( |
| 148 | + horizontal * fringe[i].width() |
| 149 | + + sampling_noise(prng)), |
| 150 | + 0, fringe[i].width()-1), |
| 151 | + std::clamp( |
| 152 | + static_cast<int>( |
| 153 | + vertical * fringe[i].height() |
| 154 | + + sampling_noise(prng)), |
| 155 | + 0, fringe[i].height()-1)); |
| 156 | + samples[i][0] = c.redF(); |
| 157 | + samples[i][1] = c.greenF(); |
| 158 | + samples[i][2] = c.blueF(); |
| 159 | + } |
| 160 | + |
| 161 | + // weights of the horizontal resp. vertical interpolation |
| 162 | + float weight_h = (qMin(x, width - x) / width) |
| 163 | + - (qMin(y, height - y) / height) |
| 164 | + + 0.5; |
| 165 | + |
| 166 | + float weight_v = 1 - weight_h; |
| 167 | + |
| 168 | + // compute the weighted sum of the vertical and horizontal |
| 169 | + // interpolations |
| 170 | + std::array<int, 3> rgb = {0, 0, 0}; |
| 171 | + for (int i = 0; i < 3; ++i) { |
| 172 | + float c = |
| 173 | + // horizontal interpolation |
| 174 | + weight_h * ((1-horizontal) * samples[2][i] + horizontal * samples[3][i]) |
| 175 | + |
| 176 | + // vertical interpolation |
| 177 | + + weight_v * ((1-vertical) * samples[0][i] + vertical * samples[1][i]) |
| 178 | + |
| 179 | + // additional noise |
| 180 | + + n; |
| 181 | + |
| 182 | + rgb[i] = static_cast<int>(0xff * c); |
| 183 | + rgb[i] = std::clamp(rgb[i], 0, 0xff); |
| 184 | + } |
| 185 | + QRgb value = qRgb(rgb[0], rgb[1], rgb[2]); |
| 186 | + pixelated.setPixel(x,y, value); |
| 187 | + } |
87 | 188 | } |
| 189 | + |
| 190 | + pixelated = pixelated.scaled(selection.width(), selection.height(), |
| 191 | + Qt::IgnoreAspectRatio, Qt::FastTransformation); |
| 192 | + |
| 193 | + painter.drawImage(selection, pixelated); |
88 | 194 | } |
89 | 195 |
|
90 | 196 | void PixelateTool::drawSearchArea(QPainter& painter, const QPixmap& pixmap) |
|
0 commit comments