|
| 1 | +Require Import init.imports. |
| 2 | +Require Import Decidability.DecidablePredicates. |
| 3 | + |
| 4 | + |
| 5 | +Section ManyOneReducibility. |
| 6 | + |
| 7 | +Definition ismanyonereduction {X Y : UU} (p : X → hProp) (q : Y → hProp) (f : X → Y) := ∏ (x : X), p x <-> q (f x). |
| 8 | + |
| 9 | +Definition reduction {X Y : UU} (p : X → hProp) (q : Y → hProp) := ∑ (f : X → Y), ismanyonereduction p q f. |
| 10 | + |
| 11 | +Definition make_reduction {X Y : UU} (p : X → hProp) (q : Y → hProp) (f : X → Y) (isrct : ismanyonereduction p q f) : (reduction p q) := (f,, isrct). |
| 12 | + |
| 13 | +Definition ismanyonereducible {X Y : UU} (p : X → hProp) (q : Y → hProp) := ∥reduction p q∥. |
| 14 | + |
| 15 | +Notation "p ≼ q" := (ismanyonereducible p q) (at level 500). |
| 16 | + |
| 17 | +Lemma isapropismanyonereduction {X Y : UU} (p : X → hProp) (q : Y → hProp) (f : X → Y) : (isaprop (ismanyonereduction p q f)). |
| 18 | +Proof. |
| 19 | + apply impred_isaprop; intros. |
| 20 | + apply isapropdirprod; apply isapropimpl; apply propproperty. |
| 21 | +Qed. |
| 22 | + |
| 23 | +Lemma reductiontodecidability {X Y : UU} (p : X → hProp) (q : Y → hProp) : (p ≼ q) → (deptypeddecider q) → (deptypeddecider p). |
| 24 | +Proof. |
| 25 | + intros rct dep1. |
| 26 | + use squash_to_prop. |
| 27 | + - exact (reduction p q). |
| 28 | + - exact rct. |
| 29 | + - apply isapropdeptypeddecider. |
| 30 | + - intros [f isrct] x. |
| 31 | + destruct (isrct x) as [impl1 impl2]. |
| 32 | + induction (dep1 (f x)). |
| 33 | + + left. exact (impl2 a). |
| 34 | + + right. intros px. apply b. exact (impl1 px). |
| 35 | +Qed. |
| 36 | + |
| 37 | +Lemma isreductionidfun {X : UU} (p : X → hProp) : (ismanyonereduction p p (idfun X)). |
| 38 | +Proof. |
| 39 | + intros x; split; apply idfun. |
| 40 | +Qed. |
| 41 | + |
| 42 | +(* Many one reducibility is a preorder. *) |
| 43 | + |
| 44 | +Lemma reductionrefl {X : UU} (p : X → hProp) : reduction p p. |
| 45 | +Proof. |
| 46 | + use make_reduction. |
| 47 | + - exact (idfun X). |
| 48 | + - exact (isreductionidfun p). |
| 49 | +Qed. |
| 50 | + |
| 51 | +Lemma reductioncomp {X Y Z : UU} (p : X → hProp) (q : Y → hProp) (r : Z → hProp) : (reduction p q) → (reduction q r) → (reduction p r). |
| 52 | +Proof. |
| 53 | + intros [f rf] [g rg]. |
| 54 | + use make_reduction. |
| 55 | + - exact (λ x : X, (g (f x))). |
| 56 | + - intros x; destruct (rf x) as [rf1 rf2]; destruct (rg (f x)) as [rg1 rg2]; split; intros pp. |
| 57 | + + exact (rg1 (rf1 pp)). |
| 58 | + + exact (rf2 (rg2 pp)). |
| 59 | +Qed. |
| 60 | + |
| 61 | +Lemma isreduciblerefl {X : UU} (p : X → hProp) : (p ≼ p). |
| 62 | +Proof. |
| 63 | + apply hinhpr. |
| 64 | + apply reductionrefl. |
| 65 | +Qed. |
| 66 | + |
| 67 | +Lemma isreduciblecomp {X Y Z : UU} (p : X → hProp) (q : Y → hProp) (r : Z → hProp) : (p ≼ q) → (q ≼ r) → (p ≼ r). |
| 68 | +Proof. |
| 69 | + apply hinhfun2. |
| 70 | + apply reductioncomp. |
| 71 | +Qed. |
| 72 | + |
| 73 | +(* Many one reducibility forms an upper semi-lattice *) |
| 74 | + |
| 75 | +Definition coprod_pred {X Y : UU} (p : X → hProp) (q : Y → hProp) : (X ⨿ Y) → hProp. |
| 76 | +Proof. |
| 77 | + intros [a | b]. |
| 78 | + - exact (p a). |
| 79 | + - exact (q b). |
| 80 | +Defined. |
| 81 | + |
| 82 | +Notation "p + q" := (coprod_pred p q). |
| 83 | + |
| 84 | +Lemma isreduction_ii1 {X Y : UU} (p : X → hProp) (q : Y → hProp) : (ismanyonereduction p (p + q) ii1). |
| 85 | +Proof. |
| 86 | +intros x. |
| 87 | +split; apply idfun. |
| 88 | +Defined. |
| 89 | + |
| 90 | +Lemma isreduction_ii2 {X Y : UU} (p : X → hProp) (q : Y → hProp) : (ismanyonereduction q (p + q) ii2). |
| 91 | +Proof. |
| 92 | + intros x. |
| 93 | + split; apply idfun. |
| 94 | +Defined. |
| 95 | + |
| 96 | +Lemma reduction_coprod1 {X Y : UU} (p : X → hProp) (q : Y → hProp) : (reduction p (p+q)). |
| 97 | +Proof. |
| 98 | + use make_reduction. |
| 99 | + - apply ii1. |
| 100 | + - apply isreduction_ii1. |
| 101 | +Defined. |
| 102 | + |
| 103 | +Lemma reduction_coprod2 {X Y : UU} (p : X → hProp) (q : Y → hProp) : (reduction q (p + q)). |
| 104 | +Proof. |
| 105 | + use make_reduction. |
| 106 | + - apply ii2. |
| 107 | + - apply isreduction_ii2. |
| 108 | +Defined. |
| 109 | + |
| 110 | +Lemma isreducible_coprod1 {X Y : UU} (p : X → hProp) (q : Y → hProp) : (p ≼ (p + q)). |
| 111 | +Proof. |
| 112 | + apply hinhpr. |
| 113 | + apply reduction_coprod1. |
| 114 | +Qed. |
| 115 | + |
| 116 | +Lemma isreducible_coprod2 {X Y : UU} (p : X → hProp) (q : Y → hProp) : (q ≼ (p + q)). |
| 117 | +Proof. |
| 118 | + apply hinhpr. |
| 119 | + apply reduction_coprod2. |
| 120 | +Qed. |
| 121 | + |
| 122 | +Lemma isreduction_sumofmaps {X Y Z : UU} (p : X → hProp) (q : Y → hProp) (r : Z → hProp) (f : X → Z) (g : Y → Z) : (ismanyonereduction p r f) → (ismanyonereduction q r g) → (ismanyonereduction (p + q) r (sumofmaps f g)). |
| 123 | +Proof. |
| 124 | + intros isf isg x. |
| 125 | + induction x. |
| 126 | + - exact (isf a). |
| 127 | + - exact (isg b). |
| 128 | +Qed. |
| 129 | + |
| 130 | +Lemma reduction_coprod {X Y Z : UU} (p : X → hProp) (q : Y → hProp) (r : Z → hProp) : (reduction p r) → (reduction q r) → (reduction (p + q) r). |
| 131 | +Proof. |
| 132 | + intros [f irf] [g irg]. |
| 133 | + use make_reduction. |
| 134 | + - exact (sumofmaps f g). |
| 135 | + - exact (isreduction_sumofmaps p q r f g irf irg). |
| 136 | +Defined. |
| 137 | + |
| 138 | +Lemma isreducible_coprod {X Y Z : UU} (p : X → hProp) (q : Y → hProp) (r : Z → hProp) : (p ≼ r) → (q≼ r) → ((p + q) ≼ r). |
| 139 | +Proof. |
| 140 | + apply hinhfun2, reduction_coprod. |
| 141 | +Qed. |
| 142 | + |
| 143 | +Definition predcompl {X : UU} (p : X → hProp) : X → hProp := (λ x : X, (hneg (p x))). |
| 144 | + |
| 145 | +(* If a predicate is reducible to a predicate q, then its complement is reducible to the complement of q *) |
| 146 | + |
| 147 | +Lemma isreductioncompl {X Y : UU} (p : X → hProp) (q : Y → hProp) (f : X → Y) : (ismanyonereduction p q f) → (ismanyonereduction (predcompl p) (predcompl q) f). |
| 148 | +Proof. |
| 149 | + intros isr x. |
| 150 | + destruct (isr x) as [isr1 isr2]. |
| 151 | + split. |
| 152 | + - intros npx qfx. |
| 153 | + exact (npx (isr2 qfx)). |
| 154 | + - intros nqfx px. |
| 155 | + exact (nqfx (isr1 px)). |
| 156 | +Defined. |
| 157 | + |
| 158 | +Lemma reductioncompl {X Y : UU} (p : X → hProp) (q : Y → hProp) : (reduction p q) → (reduction (predcompl p) (predcompl q)). |
| 159 | +Proof. |
| 160 | + intros rect. |
| 161 | + exact (make_reduction (predcompl p) (predcompl q) (pr1 rect) (isreductioncompl p q (pr1 rect) (pr2 rect))). |
| 162 | +Defined. |
| 163 | + |
| 164 | +Lemma isreduciblecompl {X Y : UU} (p : X → hProp) (q : Y → hProp) : (p ≼ q) → ((predcompl p) ≼ (predcompl q)). |
| 165 | +Proof. |
| 166 | + intros rdct. |
| 167 | + use squash_to_prop. |
| 168 | + - exact (reduction p q). |
| 169 | + - exact rdct. |
| 170 | + - apply propproperty. |
| 171 | + - intros rect. |
| 172 | + apply hinhpr. |
| 173 | + apply reductioncompl. |
| 174 | + exact rect. |
| 175 | +Qed. |
| 176 | + |
| 177 | +Definition lem := ∏ (P : UU), (isaprop P) → P ⨿ ¬P. |
| 178 | + |
| 179 | +Definition isstable {X : UU} (p : X → hProp) := ∏ (x : X), (hneg (hneg (p x))) → (p x). |
| 180 | + |
| 181 | +Lemma isapropisstable {X : UU} (p : X → hProp) : (isaprop (isstable p)). |
| 182 | +Proof. |
| 183 | + apply impred_isaprop. |
| 184 | + intros t; apply isapropimpl. |
| 185 | + apply propproperty. |
| 186 | +Qed. |
| 187 | + |
| 188 | +Lemma fundneg {X Y : UU} (f : X → Y) : (¬¬ X) → (¬¬ Y). |
| 189 | +Proof. |
| 190 | + intros nnx ny. |
| 191 | + apply nnx. |
| 192 | + intros x. |
| 193 | + exact (ny (f x)). |
| 194 | +Qed. |
| 195 | + |
| 196 | +Lemma isreduciblestable {X Y : UU} (p : X → hProp) (q : Y → hProp) : (isstable q) → (p ≼ q) → (isstable p). |
| 197 | +Proof. |
| 198 | + intros. |
| 199 | + use squash_to_prop. |
| 200 | + - exact (reduction p q). |
| 201 | + - exact X1. |
| 202 | + - apply isapropisstable. |
| 203 | + - intros [f isr] x; destruct (isr x) as [isr1 isr2]. |
| 204 | + simpl. |
| 205 | + intros nnpx. |
| 206 | + set (nf := fundneg isr1). |
| 207 | + apply isr2, (X0 (f x)). |
| 208 | + exact (nf nnpx). |
| 209 | +Qed. |
| 210 | + |
| 211 | +End ManyOneReducibility. |
0 commit comments