File tree Expand file tree Collapse file tree 1 file changed +2
-6
lines changed
Expand file tree Collapse file tree 1 file changed +2
-6
lines changed Original file line number Diff line number Diff line change @@ -11,16 +11,10 @@ properties.
1111Section Operations.
1212
1313 Definition predconj {X : UU} (p q : X → hProp) : X → hProp := (λ x : X, (p x) ∧ (q x)).
14-
15- Infix "p ∧ q" := (predconj p q) (at level 25).
1614
1715 Definition preddisj {X : UU} (p q : X → hProp) : X → hProp := (λ x : X, (p x) ∨ (q x)).
1816
19- Infix "p ∨ q" := (preddisj p q) (at level 25).
20-
2117 Definition predneg {X : UU} (p : X → hProp) : X → hProp := (λ x : X, hneg (p x)).
22-
23- Notation "¬ p" := (predneg p) (at level 35).
2418
2519 Definition preddirprod {X Y : UU} (p : X → hProp) (q : Y → hProp) : (X × Y) → hProp := (λ x : X × Y, (p (pr1 x)) ∧ (q (pr2 x))).
2620
@@ -36,4 +30,6 @@ Section Operations.
3630
3731 Definition truepred (X : UU) : X → hProp := (λ _ , htrue).
3832
33+ Definition falsepred (X : UU) : X → hProp := (λ _, hfalse).
34+
3935End Operations.
You can’t perform that action at this time.
0 commit comments