@@ -109,7 +109,7 @@ Lemma term_to_section_naturality {Y} {Y'}
109109Proof .
110110 set (t' := (term_fun_mor_TM FY : nat_trans _ _) _ t).
111111 set (A' := (pp Y' : nat_trans _ _) _ t').
112- set (Pb := isPullback_preShv_to_pointwise (homset_property _) ( isPullback_Q_pp Y' A') Γ);
112+ set (Pb := isPullback_preShv_to_pointwise (isPullback_Q_pp Y' A') Γ);
113113 simpl in Pb.
114114 apply (pullback_HSET_elements_unique Pb); clear Pb.
115115 - unfold yoneda_morphisms_data; cbn.
@@ -393,10 +393,10 @@ Proof.
393393 - apply idpath.
394394 - etrans. apply id_right.
395395 cbn. apply PullbackArrowUnique.
396- + use (PullbackArrow_PullbackPr1
397- (make_Pullback _ _ _ _ _ _ (qq_π_Pb _ f A)) ).
396+ + set (XX := (make_Pullback _ (qq_π_Pb (pr1 Z) f A))).
397+ apply (PullbackArrow_PullbackPr1 XX ).
398398 + cbn; cbn in FZ. etrans. apply maponpaths, @pathsinv0, FZ.
399- apply (PullbackArrow_PullbackPr2 (make_Pullback _ _ _ _ _ _ _ )).
399+ apply (PullbackArrow_PullbackPr2 (make_Pullback _ _)).
400400Qed .
401401
402402Lemma tm_from_qq_mor_TM {Z Z' : qq_structure_precategory} (FZ : Z --> Z')
@@ -423,10 +423,10 @@ Proof.
423423 - apply idpath.
424424 - etrans. apply id_right.
425425 cbn. apply PullbackArrowUnique.
426- + cbn. apply (PullbackArrow_PullbackPr1 (make_Pullback _ _ _ _ _ _ _ )).
426+ + cbn. apply (PullbackArrow_PullbackPr1 (make_Pullback _ _)).
427427 + cbn. cbn in FZ.
428428 etrans. apply maponpaths, @pathsinv0, FZ.
429- apply (PullbackArrow_PullbackPr2 (make_Pullback _ _ _ _ _ _ _ )).
429+ apply (PullbackArrow_PullbackPr2 (make_Pullback _ _)).
430430Qed .
431431
432432End Rename_me.
@@ -618,13 +618,14 @@ Proof.
618618 repeat (apply impred_isaprop; intro). apply setproperty.
619619Qed .
620620
621+ Definition term_fun_category : category := make_category _ has_homsets_term_fun_precategory.
622+
621623Theorem is_univalent_term_fun_structure
622- : is_univalent term_fun_precategory .
624+ : is_univalent term_fun_category .
623625Proof .
624- split.
625- - apply eq_equiv_from_retraction with iso_to_id_term_fun_precategory.
626- intros. apply eq_iso. apply isaprop_term_fun_mor.
627- - apply has_homsets_term_fun_precategory.
626+ use eq_equiv_from_retraction.
627+ - apply iso_to_id_term_fun_precategory.
628+ - intros. apply eq_iso. apply isaprop_term_fun_mor.
628629Qed .
629630
630631End Is_Univalent_Families_Strucs.
@@ -699,16 +700,17 @@ Proof.
699700 intros a b. apply isasetaprop. apply isaprop_qq_structure_mor.
700701Qed .
701702
703+ Definition qq_structure_category : category
704+ := make_category _ has_homsets_qq_structure_precategory.
705+
702706Theorem is_univalent_qq_morphism
703- : is_univalent qq_structure_precategory.
704- Proof .
705- split.
706- - intros d d'.
707- use isweqimplimpl.
708- + apply qq_structure_iso_to_id.
709- + apply isaset_qq_morphism_structure.
710- + apply isaprop_iso_qq_morphism_structure.
711- - apply has_homsets_qq_structure_precategory.
707+ : is_univalent qq_structure_category.
708+ Proof .
709+ intros d d'.
710+ use isweqimplimpl.
711+ + apply qq_structure_iso_to_id.
712+ + apply isaset_qq_morphism_structure.
713+ + apply isaprop_iso_qq_morphism_structure.
712714Qed .
713715
714716End Is_Univalent_qq_Strucs.
@@ -722,14 +724,23 @@ Proof.
722724 - apply has_homsets_qq_structure_precategory.
723725Qed .
724726
725- Definition pr1_equiv : adj_equivalence_of_precats compat_structures_pr1_functor.
727+ Definition compat_structures_category : category
728+ := make_category _ has_homsets_compat_structures_precategory.
729+
730+ Definition pr1_equiv : @adj_equivalence_of_precats
731+ compat_structures_category
732+ term_fun_category
733+ compat_structures_pr1_functor.
726734Proof .
727735 use adj_equivalence_of_precats_ff_split.
728736 - apply compat_structures_pr1_fully_faithful.
729737 - apply compat_structures_pr1_split_ess_surj.
730738Defined .
731739
732- Definition pr2_equiv : adj_equivalence_of_precats compat_structures_pr2_functor.
740+ Definition pr2_equiv : @adj_equivalence_of_precats
741+ compat_structures_category
742+ qq_structure_category
743+ compat_structures_pr2_functor.
733744Proof .
734745 use adj_equivalence_of_precats_ff_split.
735746 - apply compat_structures_pr2_fully_faithful.
0 commit comments