@@ -225,92 +225,3 @@ Proof.
225225Defined .
226226
227227End category_of_elements.
228-
229-
230- (*
231- Section category_of_elements.
232-
233- Variable C : precategory.
234- Variable F : functor C (opp_precat HSET).
235-
236- Definition precategory_of_elements_ob_mor : precategory_ob_mor.
237- Proof.
238- exists (∑ c : C, pr1 (F c)).
239- intros ca c'a'.
240- exact (∑ f : pr1 ca --> pr1 c'a', #F (f) (pr2 c'a') = (pr2 ca)).
241- Defined.
242-
243- Definition precategory_of_elements_data : precategory_data.
244- Proof.
245- exists precategory_of_elements_ob_mor.
246- split.
247- - intro c.
248- exists (identity (pr1 c)).
249- eapply pathscomp0.
250- + rewrite (functor_id F). apply idpath.
251- + apply idpath.
252- - intros a b c f g.
253- exists (pr1 f ;; pr1 g).
254- rewrite functor_comp. unfold compose; simpl in *.
255- unfold compose. simpl.
256- rewrite (pr2 g). rewrite (pr2 f).
257- apply idpath.
258- Defined.
259-
260- Lemma is_precategory_precategory_of_elements : is_precategory precategory_of_elements_data.
261- Proof.
262- repeat split; intros;
263- simpl in *.
264- - apply total2_paths_second_isaprop.
265- + apply setproperty.
266- + apply id_left.
267- - apply total2_paths_second_isaprop.
268- + apply setproperty.
269- + apply id_right.
270- - apply total2_paths_second_isaprop.
271- + apply setproperty.
272- + apply assoc.
273- Qed.
274-
275- Definition precategory_of_elements : precategory
276- := tpair _ _ is_precategory_precategory_of_elements.
277-
278- Local Notation "∫" := precategory_of_elements.
279- (* written \int in agda input mode *)
280-
281- (** first projection gives a (forgetful) functor * *)
282-
283- Definition proj_functor_data : functor_data ∫ C.
284- Proof.
285- exists (@pr1 _ _ ).
286- exact (λ a b, @pr1 _ _ ).
287- Defined.
288-
289- Lemma is_functor_proj : is_functor proj_functor_data.
290- Proof.
291- split; unfold functor_idax, functor_compax; intros;
292- simpl in *; apply idpath.
293- Qed.
294-
295- Definition proj_functor : functor _ _ := tpair _ _ is_functor_proj.
296-
297- (* need that ∫ F is saturated if C is *)
298-
299-
300- (* next steps *)
301-
302- (**
303-
304- ∫ ------> RC (∫)---> ∫ (F_RC) with F_RC : RC(C) --> Set
305- | | /
306- | | /
307- v v /
308- C ------> RC (C)
309-
310- *)
311-
312- (* need functoriality of RC, or at least action on functors *)
313-
314-
315- End category_of_elements.
316- *)
0 commit comments