Skip to content

Commit 164510a

Browse files
Removed stale dead code in [category_of_elements]
1 parent b51c88b commit 164510a

File tree

1 file changed

+0
-89
lines changed

1 file changed

+0
-89
lines changed

TypeTheory/Categories/category_of_elements.v

Lines changed: 0 additions & 89 deletions
Original file line numberDiff line numberDiff line change
@@ -225,92 +225,3 @@ Proof.
225225
Defined.
226226

227227
End category_of_elements.
228-
229-
230-
(*
231-
Section category_of_elements.
232-
233-
Variable C : precategory.
234-
Variable F : functor C (opp_precat HSET).
235-
236-
Definition precategory_of_elements_ob_mor : precategory_ob_mor.
237-
Proof.
238-
exists (∑ c : C, pr1 (F c)).
239-
intros ca c'a'.
240-
exact (∑ f : pr1 ca --> pr1 c'a', #F (f) (pr2 c'a') = (pr2 ca)).
241-
Defined.
242-
243-
Definition precategory_of_elements_data : precategory_data.
244-
Proof.
245-
exists precategory_of_elements_ob_mor.
246-
split.
247-
- intro c.
248-
exists (identity (pr1 c)).
249-
eapply pathscomp0.
250-
+ rewrite (functor_id F). apply idpath.
251-
+ apply idpath.
252-
- intros a b c f g.
253-
exists (pr1 f ;; pr1 g).
254-
rewrite functor_comp. unfold compose; simpl in *.
255-
unfold compose. simpl.
256-
rewrite (pr2 g). rewrite (pr2 f).
257-
apply idpath.
258-
Defined.
259-
260-
Lemma is_precategory_precategory_of_elements : is_precategory precategory_of_elements_data.
261-
Proof.
262-
repeat split; intros;
263-
simpl in *.
264-
- apply total2_paths_second_isaprop.
265-
+ apply setproperty.
266-
+ apply id_left.
267-
- apply total2_paths_second_isaprop.
268-
+ apply setproperty.
269-
+ apply id_right.
270-
- apply total2_paths_second_isaprop.
271-
+ apply setproperty.
272-
+ apply assoc.
273-
Qed.
274-
275-
Definition precategory_of_elements : precategory
276-
:= tpair _ _ is_precategory_precategory_of_elements.
277-
278-
Local Notation "∫" := precategory_of_elements.
279-
(* written \int in agda input mode *)
280-
281-
(** first projection gives a (forgetful) functor **)
282-
283-
Definition proj_functor_data : functor_data ∫ C.
284-
Proof.
285-
exists (@pr1 _ _ ).
286-
exact (λ a b, @pr1 _ _ ).
287-
Defined.
288-
289-
Lemma is_functor_proj : is_functor proj_functor_data.
290-
Proof.
291-
split; unfold functor_idax, functor_compax; intros;
292-
simpl in *; apply idpath.
293-
Qed.
294-
295-
Definition proj_functor : functor _ _ := tpair _ _ is_functor_proj.
296-
297-
(* need that ∫ F is saturated if C is *)
298-
299-
300-
(* next steps *)
301-
302-
(**
303-
304-
∫ ------> RC (∫)---> ∫ (F_RC) with F_RC : RC(C) --> Set
305-
| | /
306-
| | /
307-
v v /
308-
C ------> RC (C)
309-
310-
*)
311-
312-
(* need functoriality of RC, or at least action on functors *)
313-
314-
315-
End category_of_elements.
316-
*)

0 commit comments

Comments
 (0)