166166
167167End Ty_Tm_lemmas.
168168
169- Section term_subtitution .
169+ Section term_substitution .
170170
171171Lemma Subproof_γ {Γ : C} {A : Ty Γ : hSet} (a : tm A)
172172: identity (Yo Γ) ;; yy A = yy a ;;p.
@@ -352,7 +352,7 @@ Coercion tm_equiv_coer {Γ: C} {A : Ty Γ : hSet} (a : tm A) : tm_sec A := tm_eq
352352
353353End tm_equiv.
354354
355- End term_subtitution .
355+ End term_substitution .
356356
357357Section splTCwF_lemmas.
358358
@@ -588,7 +588,7 @@ Proof.
588588 - apply ((toforallpaths (functor_id Tm _ )) a).
589589Qed .
590590
591- Section term_subtitution_lemmas .
591+ Section term_substitution_lemmas .
592592
593593Definition γ_qq {Γ} {A : Ty Γ: hSet} {Γ'} (f : C⟦Γ',Γ⟧) (a : tm (A ⌊f⌋)) : C⟦Γ',Γ¤ A⟧ := (a ;; q A f).
594594
@@ -607,7 +607,7 @@ Proof.
607607 apply ((toforallpaths (functor_id Ty _ )) A).
608608Qed .
609609
610- Lemma var_subtitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm a (var A) = a.
610+ Lemma var_substitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm a (var A) = a.
611611Proof .
612612 assert (inter : @yy _ _ _ (#Tm a (var A)) = yy a).
613613 - assert (eqa : Yo^-1 (γ a) = a ) by auto.
@@ -638,13 +638,13 @@ Proof.
638638 apply pathsinv0.
639639 etrans. { apply maponpaths, pathsinv0, yy_natural. }
640640 rewrite compatibility_splTCwF.
641- rewrite var_subtitution .
641+ rewrite var_substitution .
642642 etrans. { apply pathsinv0, yy_natural. }
643643 etrans. 2: { apply yy_natural. }
644- apply maponpaths, pathsinv0, var_subtitution .
644+ apply maponpaths, pathsinv0, var_substitution .
645645Qed .
646646
647- End term_subtitution_lemmas .
647+ End term_substitution_lemmas .
648648
649649End tm_lemmas.
650650
@@ -957,7 +957,7 @@ Proof.
957957 apply tm_transportf_irrelevant ]]
958958 | apply subtypePath;
959959 [ intros x; apply (setproperty (Ty Γ : hSet))
960- | rewrite tm_transportbf; apply var_subtitution ]]).
960+ | rewrite tm_transportbf; apply var_substitution ]]).
961961Defined .
962962
963963Definition id_intro_q {Id} (nid : IdTypeNat Id)
0 commit comments