Skip to content

Commit 2cb5000

Browse files
Type fix in TypeConstructions
1 parent e5723c0 commit 2cb5000

File tree

2 files changed

+10
-10
lines changed

2 files changed

+10
-10
lines changed

TypeTheory/TypeConstructions/CwF_Structure_Display.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -382,7 +382,7 @@ Proof.
382382
exact Yoeq.
383383
Qed.
384384

385-
Lemma te_subtitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm (Yo^-1(γ a)) (te A) = a.
385+
Lemma te_substitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm (Yo^-1(γ a)) (te A) = a.
386386
Proof.
387387
assert (inter : @yy _ _ _ (#Tm (Yo^-1(γ a)) (te A)) = yy a).
388388
- rewrite yy_natural, invyoneda.
@@ -678,7 +678,7 @@ Proof.
678678
apply tm_transportf_irrelevant ]]
679679
| apply subtypePath;
680680
[ intros x; apply (setproperty (Ty Γ : hSet))
681-
| rewrite tm_transportbf; apply te_subtitution]]).
681+
| rewrite tm_transportbf; apply te_substitution]]).
682682
Defined.
683683

684684
Definition CwF_IdBased_path_induction {Id} (nid : CwF_IdTypeNat Id) (refl : CwF_IdRefl Id) := ∏ Γ (A : Ty Γ : hSet) (a : tm A)

TypeTheory/TypeConstructions/SplTCwF_TypeFormers.v

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -166,7 +166,7 @@ Qed.
166166

167167
End Ty_Tm_lemmas.
168168

169-
Section term_subtitution.
169+
Section term_substitution.
170170

171171
Lemma Subproof_γ {Γ : C} {A : Ty Γ : hSet} (a : tm A)
172172
: identity (Yo Γ) ;; yy A = yy a ;;p.
@@ -352,7 +352,7 @@ Coercion tm_equiv_coer {Γ: C} {A : Ty Γ : hSet} (a : tm A) : tm_sec A := tm_eq
352352

353353
End tm_equiv.
354354

355-
End term_subtitution.
355+
End term_substitution.
356356

357357
Section splTCwF_lemmas.
358358

@@ -588,7 +588,7 @@ Proof.
588588
- apply ((toforallpaths (functor_id Tm _ )) a).
589589
Qed.
590590

591-
Section term_subtitution_lemmas.
591+
Section term_substitution_lemmas.
592592

593593
Definition γ_qq {Γ} {A : Ty Γ: hSet} {Γ'} (f : C⟦Γ',Γ⟧) (a : tm (A ⌊f⌋)) : C⟦Γ',Γ¤ A⟧ := (a ;; q A f).
594594

@@ -607,7 +607,7 @@ Proof.
607607
apply ((toforallpaths (functor_id Ty _ )) A).
608608
Qed.
609609

610-
Lemma var_subtitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm a (var A) = a.
610+
Lemma var_substitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm a (var A) = a.
611611
Proof.
612612
assert (inter : @yy _ _ _ (#Tm a (var A)) = yy a).
613613
- assert (eqa : Yo^-1 (γ a) = a ) by auto.
@@ -638,13 +638,13 @@ Proof.
638638
apply pathsinv0.
639639
etrans. { apply maponpaths, pathsinv0, yy_natural. }
640640
rewrite compatibility_splTCwF.
641-
rewrite var_subtitution.
641+
rewrite var_substitution.
642642
etrans. { apply pathsinv0, yy_natural. }
643643
etrans. 2: { apply yy_natural. }
644-
apply maponpaths, pathsinv0, var_subtitution.
644+
apply maponpaths, pathsinv0, var_substitution.
645645
Qed.
646646

647-
End term_subtitution_lemmas.
647+
End term_substitution_lemmas.
648648

649649
End tm_lemmas.
650650

@@ -957,7 +957,7 @@ Proof.
957957
apply tm_transportf_irrelevant ]]
958958
| apply subtypePath;
959959
[ intros x; apply (setproperty (Ty Γ : hSet))
960-
| rewrite tm_transportbf; apply var_subtitution]]).
960+
| rewrite tm_transportbf; apply var_substitution]]).
961961
Defined.
962962

963963
Definition id_intro_q {Id} (nid : IdTypeNat Id)

0 commit comments

Comments
 (0)