Skip to content

Commit 6b486ed

Browse files
committed
Add Local and change to Lemma
1 parent 5b6a0f3 commit 6b486ed

File tree

2 files changed

+11
-11
lines changed

2 files changed

+11
-11
lines changed

TypeTheory/TypeConstructions/CwF_SplitTypeCat_TypeEquiv.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ Local Definition Tm : functor _ _ := source pp.
3333
Local Definition ext {Γ : C} (A : Ty Γ : hSet) : C := pr11(pr22 CwF Γ A).
3434
Local Notation "Γ.: A" := (ext A) (at level 24).
3535

36-
Definition pi {Γ :C} (A : Ty Γ : hSet) : C⟦Γ.:A,Γ⟧ := pr21 (pr22 CwF _ A).
36+
Local Definition pi {Γ :C} (A : Ty Γ : hSet) : C⟦Γ.:A,Γ⟧ := pr21 (pr22 CwF _ A).
3737

3838
(* just a simple to use pp as a nat_trans *)
3939
Local Definition Nat_trans_morp {C : category} (Γ : C) (p : mor_total(preShv C))

TypeTheory/TypeConstructions/CwF_Structure_Display.v

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -59,10 +59,10 @@ Qed.
5959

6060
(** * Tm as a Display **)
6161
Section tm.
62-
Definition tm {Γ : C} (A : Ty Γ : hSet) : UU
62+
Local Definition tm {Γ : C} (A : Ty Γ : hSet) : UU
6363
:= ∑ (a : Tm Γ : hSet), pp_ _ a = A.
6464

65-
Definition pr1_tm {Γ : C} {A : Ty Γ : hSet} (a : tm A) : Tm Γ : hSet := pr1 a.
65+
Local Definition pr1_tm {Γ : C} {A : Ty Γ : hSet} (a : tm A) : Tm Γ : hSet := pr1 a.
6666
Coercion pr1_tm : tm >-> pr1hSet.
6767

6868
Lemma ppComp1 {Γ Δ : C} {A : Ty Γ : hSet} (f : C^op ⟦Γ,Δ⟧) (a : tm A) :
@@ -74,7 +74,7 @@ Qed.
7474

7575
Definition reind_cwf {Γ : C} (A : Ty Γ : hSet) {Γ'} (f : C⟦Γ',Γ⟧)
7676
: Ty Γ' : hSet := #Ty f A.
77-
Definition reind_tm {Γ Δ} (f : C^op ⟦Γ,Δ⟧) {A : Ty Γ : hSet} (x : tm A)
77+
Local Definition reind_tm {Γ Δ} (f : C^op ⟦Γ,Δ⟧) {A : Ty Γ : hSet} (x : tm A)
7878
: tm (#Ty f A) := #Tm f x,,ppComp1 f x.
7979

8080
Local Definition te {Γ : C} (A : Ty Γ : hSet) : tm (#Ty (pi A) A)
@@ -83,15 +83,15 @@ Local Definition te {Γ : C} (A : Ty Γ : hSet) : tm (#Ty (pi A) A)
8383
Local Definition te' {Γ : C} (A : Ty Γ : hSet) : pp_ _ (te A) = #Ty (pi A) A := pr212 pr22 CwF Γ A.
8484
Definition CwF_Pullback {Γ} (A : Ty Γ : hSet) : isPullback (yy A) pp (#Yo (pi A)) (yy(te A)) (cwf_square_comm (te' A)) := pr22 pr22 CwF Γ A.
8585

86-
Definition tm_transportf {Γ} {A A' : Ty Γ : hSet} (e : A = A')
86+
Local Definition tm_transportf {Γ} {A A' : Ty Γ : hSet} (e : A = A')
8787
: tm A ≃ tm A'.
8888
Proof.
8989
use weqbandf.
9090
- exact (idweq (Tm Γ : hSet)).
9191
- induction e. intro x. exact (idweq _).
9292
Defined.
9393

94-
Definition tm_transportb {Γ} {A A' : Ty Γ : hSet} (e : A = A')
94+
Local Definition tm_transportb {Γ} {A A' : Ty Γ : hSet} (e : A = A')
9595
: tm A' ≃ tm A := invweq(tm_transportf e).
9696

9797
Lemma tm_transportf_idpath {Γ} {A : Ty Γ : hSet} (t : tm A)
@@ -158,7 +158,7 @@ Proof.
158158
reflexivity.
159159
Qed.
160160

161-
Definition tm_transportf_bind {Γ} {A A' A'': Ty Γ : hSet} {e : A' = A} {e' : A'' = A'}
161+
Lemma tm_transportf_bind {Γ} {A A' A'': Ty Γ : hSet} {e : A' = A} {e' : A'' = A'}
162162
{t} {t'} {t''} (ee : t = tm_transportf e t') (ee' : t' = tm_transportf e' t'')
163163
: t = tm_transportf (e' @ e) t''.
164164
Proof.
@@ -177,7 +177,7 @@ Proof.
177177
now rewrite <- tm_transportf_compose, pathsinv0l, tm_transportf_idpath.
178178
Qed.
179179

180-
Definition reind_id_tm {Γ : C}{A : Ty Γ : hSet} (a : tm A)
180+
Lemma reind_id_tm {Γ : C}{A : Ty Γ : hSet} (a : tm A)
181181
: reind_tm (identity _) a
182182
= tm_transportb ((toforallpaths _ _ _ (pr12 Ty _ )) A) a.
183183
Proof.
@@ -246,7 +246,7 @@ Section qq.
246246
Let Xk {Γ : C} (A : Ty Γ : hSet) :=
247247
make_Pullback _ _ _ _ _ _ (pr22 pr22 CwF Γ A).
248248

249-
Definition qq_yoneda {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
249+
Local Definition qq_yoneda {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
250250
: (preShv C) ⟦Yo (Δ .: (#Ty f A)), Yo (Γ.: A) ⟧.
251251
Proof.
252252
use (PullbackArrow (Xk A)).
@@ -275,7 +275,7 @@ Proof.
275275
Qed.
276276

277277

278-
Definition qq_term {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
278+
Local Definition qq_term {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
279279
: C ⟦ Δ.:(#Ty f A) , Γ.: A⟧.
280280
Proof.
281281
apply (invweq (make_weq _ (yoneda_fully_faithful _ (homset_property _) _ _ ))) ,
@@ -453,7 +453,7 @@ Proof.
453453
exact inter.
454454
Qed.
455455

456-
Definition reind_id_tm' {Γ : C} {A : Ty Γ : hSet} (a : tm A) (b : tm A)
456+
Lemma reind_id_tm' {Γ : C} {A : Ty Γ : hSet} (a : tm A) (b : tm A)
457457
(e : # Ty (identity Γ) A = # Ty (Yo^-1 (γ b) ;; pi A) A)
458458
: tm_transportf e (reind_tm (identity _) a)
459459
= tm_transportf ((Ty_identity _) @ e) a.

0 commit comments

Comments
 (0)