Skip to content

Commit 79b312a

Browse files
Factored out a few more [has_homsets]
1 parent 6fb3a4c commit 79b312a

File tree

3 files changed

+4
-11
lines changed

3 files changed

+4
-11
lines changed

TypeTheory/ALV1/CwF_def.v

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -425,8 +425,6 @@ Let TY' : preShv D := Ty (pr1 T').
425425
Let pp : _ ⟦ TM , TY ⟧ := pr1 T.
426426
Let pp' : _ ⟦ TM' , TY' ⟧ := pr1 T'.
427427

428-
Let hsDop : has_homsets (opp_precat D) := has_homsets_opp (homset_property _).
429-
430428
Let ηη : functor (preShv D) (preShv C) :=
431429
pre_composition_functor C^op D^op _ (functor_opp F).
432430

@@ -520,8 +518,6 @@ Let TY' : preShv RC := Ty (pr1 T').
520518
Let pp : _ ⟦ TM , TY ⟧ := pr1 T.
521519
Let pp' : _ ⟦ TM' , TY' ⟧ := pr1 T'.
522520

523-
Let hsRCop : has_homsets (opp_precat RC) := has_homsets_opp (homset_property _).
524-
525521
Let ηη : functor (preShv RC) (preShv C) :=
526522
pre_composition_functor C^op RC^op _ (functor_opp (Rezk_eta C)).
527523

TypeTheory/ALV1/TypeCat.v

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -188,17 +188,16 @@ Definition is_split_typecat {CC : precategory} (C : typecat_structure CC)
188188
;; q_typecat (A{{f}}) g
189189
;; q_typecat A f).
190190

191-
Lemma isaprop_is_split_typecat (CC : precategory) (hs : has_homsets CC)
191+
Lemma isaprop_is_split_typecat (CC : category)
192192
(C : typecat_structure CC) : isaprop (is_split_typecat C).
193193
Proof.
194194
repeat (apply isofhleveltotal2; intros).
195195
- apply impred; intro; apply isapropisaset.
196196
- repeat (apply impred; intro). apply x.
197-
- repeat (apply impred; intro). apply hs.
197+
- repeat (apply impred; intro). apply homset_property.
198198
- repeat (apply impred; intro). apply x.
199-
- intros.
200-
repeat (apply impred; intro).
201-
apply hs.
199+
- intros.
200+
repeat (apply impred; intro). apply homset_property.
202201
Qed.
203202

204203
Definition typecat := ∑ (C : category), (typecat_structure C).

TypeTheory/ALV2/SplitTypeCat_ComprehensionCat.v

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -901,8 +901,6 @@ Section SplitTypeCat_DiscreteComprehensionCat_Equiv.
901901
apply funextsec. intros ?.
902902
apply isaprop_isPullback.
903903
+ apply isaprop_is_split_typecat.
904-
apply homset_property.
905-
906904
- intros DC.
907905
use total2_paths_f.
908906
2: use total2_paths_f.

0 commit comments

Comments
 (0)