Skip to content

Commit 7f77246

Browse files
Adapt to che renamings of the UniMath rezk completion files
1 parent 1d2b8b0 commit 7f77246

File tree

8 files changed

+89
-89
lines changed

8 files changed

+89
-89
lines changed

TypeTheory/Articles/ALV_2017.v

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66

77
(**
88
9-
This file accompanies the article _Categorical structures for type theory in univalent foundations_, Ahrens, Lumsdaine, Voevodsky, 2017, Logical Methods in Computer Science 14(3), https://arxiv.org/abs/1705.04310,
9+
This file accompanies the article _Categorical structures for type theory in univalent foundations_, Ahrens, Lumsdaine, Voevodsky, 2017, Logical Methods in Computer Science 14(3), https://arxiv.org/abs/1705.04310,
1010
https://doi.org/10.23638/LMCS-14(3:18)2018
1111
1212
This file should contain _no substantial formalisation_, and should not be imported. Its aim is to provide an index from the results of the article ALV 2017 to their locations in the actual formalisation, so that they remain easily available and checkable for readers of the article, even as the library continues to evolve.
@@ -15,7 +15,7 @@ This file should contain _no substantial formalisation_, and should not be impor
1515

1616
Require Import UniMath.Foundations.Sets.
1717
Require Import TypeTheory.Auxiliary.CategoryTheoryImports.
18-
Require Import UniMath.CategoryTheory.rezk_completion.
18+
Require Import UniMath.CategoryTheory.RezkCompletions.Construction.
1919
Require Import TypeTheory.Auxiliary.Auxiliary.
2020
Require Import TypeTheory.Auxiliary.CategoryTheory.
2121

@@ -53,14 +53,14 @@ Defined.
5353

5454
(** ** Compatible [qq] from term structure and vice versa *)
5555

56-
Definition compatible_qq_from_term {C : category}
56+
Definition compatible_qq_from_term {C : category}
5757
{X : obj_ext_structure C} (Y : term_fun_structure C X)
5858
: compatible_qq_morphism_structure Y.
5959
Proof.
6060
apply compatible_qq_from_term.
6161
Defined.
6262

63-
Definition compatible_term_from_qq {C : category}
63+
Definition compatible_term_from_qq {C : category}
6464
{X : obj_ext_structure C} (Z : qq_morphism_structure X)
6565
: compatible_term_structure Z.
6666
Proof.
@@ -90,11 +90,11 @@ Defined.
9090

9191

9292
(** * Map from [cwf_structure C] to [rep_map C] *)
93-
(** and proof that the map is an equivalence when [C] is univalent *)
93+
(** and proof that the map is an equivalence when [C] is univalent *)
9494

9595
Definition from_cwf_to_rep (C : category)
96-
: cwf_structure C → rep_map C.
97-
Proof.
96+
: cwf_structure C → rep_map C.
97+
Proof.
9898
exact (from_cwf_to_rep_map C).
9999
Defined.
100100

@@ -111,16 +111,16 @@ Defined.
111111

112112
Definition transfer_cwf_weak_equivalence {C D : category} (F : C ⟶ D)
113113
: fully_faithful F → essentially_surjective F
114-
→ is_univalent D →
114+
→ is_univalent D →
115115
cwf_structure C → cwf_structure D.
116116
Proof.
117117
apply transfer_cwf_weak_equiv.
118118
Defined.
119119

120120
(** * Transfer of [rep_map]s along weak equivalences *)
121121

122-
Definition transfer_rep_map_weak_equivalence {C D : category}
123-
(F : C ⟶ D)
122+
Definition transfer_rep_map_weak_equivalence {C D : category}
123+
(F : C ⟶ D)
124124
: fully_faithful F → essentially_surjective F → rep_map C ≃ rep_map D.
125125
Proof.
126126
apply transfer_rep_map_weak_equiv.

TypeTheory/Articles/ALV_2018.v

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ This file is intended to accompany a sequel article to ALV-2017, currently in (d
1212

1313
Require Import UniMath.Foundations.Sets.
1414
Require Import TypeTheory.Auxiliary.CategoryTheoryImports.
15-
Require Import UniMath.CategoryTheory.rezk_completion.
15+
Require Import UniMath.CategoryTheory.RezkCompletions.Construction.
1616
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
1717
Require Import TypeTheory.Auxiliary.Auxiliary.
1818
Require Import TypeTheory.Auxiliary.CategoryTheory.
@@ -82,10 +82,10 @@ Admitted.
8282

8383

8484
(** * Map from [cwf_structure C] to [rep_map C] *)
85-
(** and proof that the map is an equivalence when [C] is univalent *)
85+
(** and proof that the map is an equivalence when [C] is univalent *)
8686

8787
Definition functor_cwf_to_rep (C : category)
88-
: cwf_structure_cat C ⟶ rep_map_cat C.
88+
: cwf_structure_cat C ⟶ rep_map_cat C.
8989
Admitted.
9090

9191
Proposition fully_faithful_cwf_to_rep (C : category)
@@ -100,15 +100,15 @@ Admitted.
100100

101101
Definition transfer_cwf_weak_equivalence {C D : category} (F : C ⟶ D)
102102
: fully_faithful F → essentially_surjective F
103-
→ is_univalent D →
103+
→ is_univalent D →
104104
cwf_structure_cat C ⟶ cwf_structure_cat D.
105105
Admitted.
106106
(* TODO: perhaps show functorial in F also. *)
107107

108108
(** * Transfer of [rep_map]s along weak equivalences *)
109109

110110
Definition transfer_rep_map_weak_equivalence
111-
{C D : category} (F : C ⟶ D)
111+
{C D : category} (F : C ⟶ D)
112112
: fully_faithful F → essentially_surjective F
113113
→ equivalence_of_cats (rep_map_cat C) (rep_map_cat D).
114114
Admitted.

TypeTheory/Auxiliary/CategoryTheoryImports.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ Require Export UniMath.CategoryTheory.whiskering.
1414
Require Export UniMath.CategoryTheory.Adjunctions.Core.
1515
Require Export UniMath.CategoryTheory.Equivalences.Core.
1616
Require Export UniMath.CategoryTheory.precomp_fully_faithful.
17-
(* Require Export UniMath.CategoryTheory.rezk_completion. *)
17+
(* Require Export UniMath.CategoryTheory.RezkCompletions.Construction. *)
1818
Require Export UniMath.CategoryTheory.yoneda.
1919
Require Export UniMath.CategoryTheory.Categories.HSET.Core.
2020
Require Export UniMath.CategoryTheory.Categories.HSET.Univalence.

TypeTheory/CwF/CwF_def.v

Lines changed: 33 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ Contents:
1717
Require Import UniMath.Foundations.All.
1818
Require Import UniMath.MoreFoundations.All.
1919
Require Import TypeTheory.Auxiliary.CategoryTheoryImports.
20-
Require Import UniMath.CategoryTheory.rezk_completion.
20+
Require Import UniMath.CategoryTheory.RezkCompletions.Construction.
2121

2222
Require Import TypeTheory.Auxiliary.Auxiliary.
2323
Require Import TypeTheory.Auxiliary.CategoryTheory.
@@ -28,7 +28,7 @@ Require Import TypeTheory.RelUniv.RelativeUniverses.
2828
Require Import TypeTheory.RelUniv.Transport_along_Equivs.
2929
Require Import TypeTheory.RelUniv.RelUnivYonedaCompletion.
3030

31-
(** * Definition of a CwF
31+
(** * Definition of a CwF
3232
3333
A (Fiore-style) CwF consists of:
3434
@@ -50,7 +50,7 @@ Section Fix_Category.
5050

5151
Context {C : category}.
5252

53-
(** ** Representations of maps of presheaves
53+
(** ** Representations of maps of presheaves
5454
5555
A *representation* of a map Tm —p—> Ty of presheaves consists of data illustrating that “every fibre of _p_ is representable”; that is, giving for each (A : Ty Γ), some object and map (π A) : Γ.A Γ, along with a term (te A) over A which is “universal”, in that it represents the fiber of p over A. *)
5656

@@ -81,11 +81,11 @@ Proof.
8181
Qed.
8282

8383
Definition cwf_fiber_representation {Γ : C} (A : Ty Γ : hSet) : UU
84-
:= ∑ (ΓAπ : map_into Γ) (te : cwf_tm_of_ty (# Ty (pr2 ΓAπ) A)),
84+
:= ∑ (ΓAπ : map_into Γ) (te : cwf_tm_of_ty (# Ty (pr2 ΓAπ) A)),
8585
isPullback (cwf_square_comm (pr2 te)).
8686
(* See below for an alternative version [cwf_fiber_representation'], separated into data + axioms *)
8787

88-
Definition cwf_representation : UU
88+
Definition cwf_representation : UU
8989
:= ∏ Γ (A : Ty Γ : hSet), cwf_fiber_representation A.
9090

9191
End Representation.
@@ -141,28 +141,28 @@ Definition cwf_fiber_rep_data {Γ:C} (A : Ty pp Γ : hSet) : UU
141141
:= ∑ (ΓA : C), C ⟦ΓA, Γ⟧ × (Tm pp ΓA : hSet).
142142

143143
Definition cwf_fiber_rep_ax {Γ:C} {A : Ty pp Γ : hSet}
144-
(ΓAπt : cwf_fiber_rep_data A) : UU
144+
(ΓAπt : cwf_fiber_rep_data A) : UU
145145
:= ∑ (H : pp $nt (pr2 (pr2 ΓAπt))
146146
= #(Ty pp) (pr1 (pr2 ΓAπt)) A),
147147
isPullback (cwf_square_comm H).
148148

149149
Definition cwf_fiber_representation' {Γ:C} (A : Ty pp Γ : hSet) : UU
150150
:= ∑ ΓAπt : cwf_fiber_rep_data A, cwf_fiber_rep_ax ΓAπt.
151151

152-
Definition cwf_fiber_representation_weq {Γ:C} (A : Ty pp Γ : hSet)
152+
Definition cwf_fiber_representation_weq {Γ:C} (A : Ty pp Γ : hSet)
153153
: cwf_fiber_representation pp A ≃ cwf_fiber_representation' A.
154154
Proof.
155155
unfold cwf_fiber_representation, cwf_fiber_representation'.
156156
eapply weqcomp. (* (ΓA,π), ((v,e),P) *)
157157
eapply weqfibtototal. intro x.
158158
apply weqtotal2asstor. simpl. (* (ΓA,π), (v, (e,P)) *)
159-
eapply weqcomp; [eapply invweq; apply weqtotal2asstol |]; simpl.
159+
eapply weqcomp; [eapply invweq; apply weqtotal2asstol |]; simpl.
160160
apply invweq.
161161
eapply weqcomp.
162162
apply weqtotal2asstor. cbn.
163163
apply weqfibtototal. intro ΓA.
164164
apply weqtotal2asstor.
165-
Defined.
165+
Defined.
166166

167167
End Representation_Regrouping.
168168

@@ -175,8 +175,8 @@ Proof.
175175
intros isC.
176176
apply invproofirrelevance.
177177
intros x x'. apply subtypePath.
178-
{ intro t.
179-
apply isofhleveltotal2.
178+
{ intro t.
179+
apply isofhleveltotal2.
180180
- apply setproperty.
181181
- intro. apply isaprop_isPullback.
182182
}
@@ -194,8 +194,8 @@ Proof.
194194
cbn.
195195
etrans. { apply yoneda_postcompose. }
196196
etrans. {
197-
refine (toforallpaths _ (identity _)).
198-
refine (toforallpaths _ _).
197+
refine (toforallpaths _ (identity _)).
198+
refine (toforallpaths _ _).
199199
apply maponpaths,
200200
(PullbackArrow_PullbackPr1 (make_Pullback _ (pr22 x))).
201201
}
@@ -283,7 +283,7 @@ Lemma weq_cwf_representation_rel_universe_structure
283283
: cwf_representation pp ≃ rel_universe_structure Yo pp.
284284
Proof.
285285
apply weqonsecfibers. intro Γ.
286-
(* convert the type argument under [yy] *)
286+
(* convert the type argument under [yy] *)
287287
eapply weqcomp.
288288
2: { eapply invweq.
289289
refine (weqonsecbase _ _). apply yy.
@@ -294,7 +294,7 @@ Defined.
294294

295295
End Representation_FComprehension.
296296

297-
Definition weq_cwf_structure_RelUnivYo
297+
Definition weq_cwf_structure_RelUnivYo
298298
: cwf_structure C ≃ @relative_universe C _ Yo.
299299
Proof.
300300
apply weqfibtototal.
@@ -337,7 +337,7 @@ Qed.
337337

338338
Definition transfer_cwf_weak_equiv {C D : category} (F : C ⟶ D)
339339
(F_ff : fully_faithful F) (F_es : essentially_surjective F)
340-
(Dcat : is_univalent D)
340+
(Dcat : is_univalent D)
341341
: cwf_structure C → cwf_structure D.
342342
Proof.
343343
intro CC.
@@ -351,11 +351,11 @@ Defined.
351351

352352
Section CwF_Ftransport_recover.
353353

354-
Context {C D : category}
354+
Context {C D : category}
355355
(F : C ⟶ D)
356-
(F_ff : fully_faithful F)
356+
(F_ff : fully_faithful F)
357357
(F_es : essentially_surjective F)
358-
(Dcat : is_univalent D)
358+
(Dcat : is_univalent D)
359359
(T : cwf_structure C).
360360

361361
Let DD : univalent_category := (D,,Dcat).
@@ -371,34 +371,34 @@ Let pp' : _ ⟦ TM' , TY' ⟧ := pr1 T'.
371371
Let ηη : functor (preShv D) (preShv C) :=
372372
pre_composition_functor C^op D^op _ (functor_opp F).
373373

374-
Let isweq_Fcomp : isweq (pr1 (pr1 (Fop_precomp F))) :=
375-
adj_equiv_of_cats_is_weq_of_objects
376-
_ _
374+
Let isweq_Fcomp : isweq (pr1 (pr1 (Fop_precomp F))) :=
375+
adj_equiv_of_cats_is_weq_of_objects
376+
_ _
377377
(is_univalent_functor_category _ _ is_univalent_HSET )
378378
(is_univalent_functor_category _ _ is_univalent_HSET )
379-
_
379+
_
380380
(equiv_Fcomp F F_ff F_es).
381381

382-
Lemma Tm_transfer_recover :
382+
Lemma Tm_transfer_recover :
383383
TM = ηη TM'.
384384
Proof.
385385
assert (XT := homotweqinvweq (make_weq _ isweq_Fcomp) TM).
386386
apply pathsinv0.
387387
apply XT.
388-
Defined.
388+
Defined.
389389

390-
Lemma Ty_transfer_recover :
390+
Lemma Ty_transfer_recover :
391391
TY = ηη TY'.
392392
Proof.
393393
assert (XT := homotweqinvweq (make_weq _ isweq_Fcomp) TY).
394394
apply pathsinv0.
395395
apply XT.
396-
Defined.
396+
Defined.
397397

398398
Let Fopequiv : adj_equivalence_of_cats _ := equiv_Fcomp F F_ff F_es.
399399

400400

401-
Definition pp'_eta :
401+
Definition pp'_eta :
402402
preShv C ⟦ ηη TM' , ηη TY' ⟧.
403403
Proof.
404404
apply (# ηη pp').
@@ -452,25 +452,25 @@ Let pp' : _ ⟦ TM' , TY' ⟧ := pr1 T'.
452452
Let ηη : functor (preShv RC) (preShv C) :=
453453
pre_composition_functor C^op RC^op _ (functor_opp (Rezk_eta C)).
454454

455-
Lemma Tm_Rezk_completion_recover :
455+
Lemma Tm_Rezk_completion_recover :
456456
(* Tm = functor_composite (functor_opp (Rezk_eta C _ )) Tm'.*)
457457
TM = ηη TM'.
458458
Proof.
459459
set (XR := Rezk_opp_weq C HSET is_univalent_HSET).
460460
assert (XT := homotweqinvweq XR TM).
461461
apply pathsinv0.
462462
apply XT.
463-
Defined.
463+
Defined.
464464

465-
Lemma Ty_Rezk_completion_recover :
465+
Lemma Ty_Rezk_completion_recover :
466466
(* Ty = functor_composite (functor_opp (Rezk_eta C _ )) Ty'. *)
467467
TY = ηη TY'.
468468
Proof.
469469
set (XR := Rezk_opp_weq C HSET is_univalent_HSET).
470470
assert (XT := homotweqinvweq XR TY).
471471
apply pathsinv0.
472472
apply XT.
473-
Defined.
473+
Defined.
474474

475475

476476
Let RCequiv : adj_equivalence_of_cats _ := Rezk_op_adj_equiv C
@@ -481,7 +481,7 @@ Proof.
481481
apply functor_category_has_homsets.
482482
Defined.
483483

484-
Definition RC_pp'_eta :
484+
Definition RC_pp'_eta :
485485
preShv C ⟦ ηη TM' , ηη TY' ⟧.
486486
Proof.
487487
apply (# ηη pp').

0 commit comments

Comments
 (0)