@@ -17,7 +17,7 @@ Contents:
1717Require Import UniMath.Foundations.All .
1818Require Import UniMath.MoreFoundations.All .
1919Require Import TypeTheory.Auxiliary.CategoryTheoryImports.
20- Require Import UniMath.CategoryTheory.rezk_completion .
20+ Require Import UniMath.CategoryTheory.RezkCompletions.Construction .
2121
2222Require Import TypeTheory.Auxiliary.Auxiliary.
2323Require Import TypeTheory.Auxiliary.CategoryTheory.
@@ -28,7 +28,7 @@ Require Import TypeTheory.RelUniv.RelativeUniverses.
2828Require Import TypeTheory.RelUniv.Transport_along_Equivs.
2929Require Import TypeTheory.RelUniv.RelUnivYonedaCompletion.
3030
31- (** * Definition of a CwF
31+ (** * Definition of a CwF
3232
3333A (Fiore-style) CwF consists of:
3434
@@ -50,7 +50,7 @@ Section Fix_Category.
5050
5151Context {C : category}.
5252
53- (** ** Representations of maps of presheaves
53+ (** ** Representations of maps of presheaves
5454
5555A *representation* of a map Tm —p—> Ty of presheaves consists of data illustrating that “every fibre of _p_ is representable”; that is, giving for each (A : Ty Γ), some object and map (π A) : Γ.A Γ, along with a term (te A) over A which is “universal”, in that it represents the fiber of p over A. *)
5656
@@ -81,11 +81,11 @@ Proof.
8181Qed .
8282
8383Definition cwf_fiber_representation {Γ : C} (A : Ty Γ : hSet) : UU
84- := ∑ (ΓAπ : map_into Γ) (te : cwf_tm_of_ty (# Ty (pr2 ΓAπ) A)),
84+ := ∑ (ΓAπ : map_into Γ) (te : cwf_tm_of_ty (# Ty (pr2 ΓAπ) A)),
8585 isPullback (cwf_square_comm (pr2 te)).
8686(* See below for an alternative version [cwf_fiber_representation'], separated into data + axioms *)
8787
88- Definition cwf_representation : UU
88+ Definition cwf_representation : UU
8989 := ∏ Γ (A : Ty Γ : hSet), cwf_fiber_representation A.
9090
9191End Representation.
@@ -141,28 +141,28 @@ Definition cwf_fiber_rep_data {Γ:C} (A : Ty pp Γ : hSet) : UU
141141 := ∑ (ΓA : C), C ⟦ΓA, Γ⟧ × (Tm pp ΓA : hSet).
142142
143143Definition cwf_fiber_rep_ax {Γ:C} {A : Ty pp Γ : hSet}
144- (ΓAπt : cwf_fiber_rep_data A) : UU
144+ (ΓAπt : cwf_fiber_rep_data A) : UU
145145 := ∑ (H : pp $nt (pr2 (pr2 ΓAπt))
146146 = #(Ty pp) (pr1 (pr2 ΓAπt)) A),
147147 isPullback (cwf_square_comm H).
148148
149149Definition cwf_fiber_representation' {Γ:C} (A : Ty pp Γ : hSet) : UU
150150 := ∑ ΓAπt : cwf_fiber_rep_data A, cwf_fiber_rep_ax ΓAπt.
151151
152- Definition cwf_fiber_representation_weq {Γ:C} (A : Ty pp Γ : hSet)
152+ Definition cwf_fiber_representation_weq {Γ:C} (A : Ty pp Γ : hSet)
153153 : cwf_fiber_representation pp A ≃ cwf_fiber_representation' A.
154154Proof .
155155 unfold cwf_fiber_representation, cwf_fiber_representation'.
156156 eapply weqcomp. (* (ΓA,π), ((v,e),P) *)
157157 eapply weqfibtototal. intro x.
158158 apply weqtotal2asstor. simpl. (* (ΓA,π), (v, (e,P)) *)
159- eapply weqcomp; [eapply invweq; apply weqtotal2asstol |]; simpl.
159+ eapply weqcomp; [eapply invweq; apply weqtotal2asstol |]; simpl.
160160 apply invweq.
161161 eapply weqcomp.
162162 apply weqtotal2asstor. cbn.
163163 apply weqfibtototal. intro ΓA.
164164 apply weqtotal2asstor.
165- Defined .
165+ Defined .
166166
167167End Representation_Regrouping.
168168
@@ -175,8 +175,8 @@ Proof.
175175 intros isC.
176176 apply invproofirrelevance.
177177 intros x x'. apply subtypePath.
178- { intro t.
179- apply isofhleveltotal2.
178+ { intro t.
179+ apply isofhleveltotal2.
180180 - apply setproperty.
181181 - intro. apply isaprop_isPullback.
182182 }
@@ -194,8 +194,8 @@ Proof.
194194 cbn.
195195 etrans. { apply yoneda_postcompose. }
196196 etrans. {
197- refine (toforallpaths _ (identity _)).
198- refine (toforallpaths _ _).
197+ refine (toforallpaths _ (identity _)).
198+ refine (toforallpaths _ _).
199199 apply maponpaths,
200200 (PullbackArrow_PullbackPr1 (make_Pullback _ (pr22 x))).
201201 }
@@ -283,7 +283,7 @@ Lemma weq_cwf_representation_rel_universe_structure
283283 : cwf_representation pp ≃ rel_universe_structure Yo pp.
284284Proof .
285285 apply weqonsecfibers. intro Γ.
286- (* convert the type argument under [yy] *)
286+ (* convert the type argument under [yy] *)
287287 eapply weqcomp.
288288 2: { eapply invweq.
289289 refine (weqonsecbase _ _). apply yy.
@@ -294,7 +294,7 @@ Defined.
294294
295295End Representation_FComprehension.
296296
297- Definition weq_cwf_structure_RelUnivYo
297+ Definition weq_cwf_structure_RelUnivYo
298298 : cwf_structure C ≃ @relative_universe C _ Yo.
299299Proof .
300300 apply weqfibtototal.
337337
338338Definition transfer_cwf_weak_equiv {C D : category} (F : C ⟶ D)
339339 (F_ff : fully_faithful F) (F_es : essentially_surjective F)
340- (Dcat : is_univalent D)
340+ (Dcat : is_univalent D)
341341 : cwf_structure C → cwf_structure D.
342342Proof .
343343 intro CC.
@@ -351,11 +351,11 @@ Defined.
351351
352352Section CwF_Ftransport_recover.
353353
354- Context {C D : category}
354+ Context {C D : category}
355355 (F : C ⟶ D)
356- (F_ff : fully_faithful F)
356+ (F_ff : fully_faithful F)
357357 (F_es : essentially_surjective F)
358- (Dcat : is_univalent D)
358+ (Dcat : is_univalent D)
359359 (T : cwf_structure C).
360360
361361Let DD : univalent_category := (D,,Dcat).
@@ -371,34 +371,34 @@ Let pp' : _ ⟦ TM' , TY' ⟧ := pr1 T'.
371371Let ηη : functor (preShv D) (preShv C) :=
372372 pre_composition_functor C^op D^op _ (functor_opp F).
373373
374- Let isweq_Fcomp : isweq (pr1 (pr1 (Fop_precomp F))) :=
375- adj_equiv_of_cats_is_weq_of_objects
376- _ _
374+ Let isweq_Fcomp : isweq (pr1 (pr1 (Fop_precomp F))) :=
375+ adj_equiv_of_cats_is_weq_of_objects
376+ _ _
377377 (is_univalent_functor_category _ _ is_univalent_HSET )
378378 (is_univalent_functor_category _ _ is_univalent_HSET )
379- _
379+ _
380380 (equiv_Fcomp F F_ff F_es).
381381
382- Lemma Tm_transfer_recover :
382+ Lemma Tm_transfer_recover :
383383 TM = ηη TM'.
384384Proof .
385385 assert (XT := homotweqinvweq (make_weq _ isweq_Fcomp) TM).
386386 apply pathsinv0.
387387 apply XT.
388- Defined .
388+ Defined .
389389
390- Lemma Ty_transfer_recover :
390+ Lemma Ty_transfer_recover :
391391 TY = ηη TY'.
392392Proof .
393393 assert (XT := homotweqinvweq (make_weq _ isweq_Fcomp) TY).
394394 apply pathsinv0.
395395 apply XT.
396- Defined .
396+ Defined .
397397
398398Let Fopequiv : adj_equivalence_of_cats _ := equiv_Fcomp F F_ff F_es.
399399
400400
401- Definition pp'_eta :
401+ Definition pp'_eta :
402402 preShv C ⟦ ηη TM' , ηη TY' ⟧.
403403Proof .
404404 apply (# ηη pp').
@@ -452,25 +452,25 @@ Let pp' : _ ⟦ TM' , TY' ⟧ := pr1 T'.
452452Let ηη : functor (preShv RC) (preShv C) :=
453453 pre_composition_functor C^op RC^op _ (functor_opp (Rezk_eta C)).
454454
455- Lemma Tm_Rezk_completion_recover :
455+ Lemma Tm_Rezk_completion_recover :
456456 (* Tm = functor_composite (functor_opp (Rezk_eta C _ )) Tm'. *)
457457 TM = ηη TM'.
458458Proof .
459459 set (XR := Rezk_opp_weq C HSET is_univalent_HSET).
460460 assert (XT := homotweqinvweq XR TM).
461461 apply pathsinv0.
462462 apply XT.
463- Defined .
463+ Defined .
464464
465- Lemma Ty_Rezk_completion_recover :
465+ Lemma Ty_Rezk_completion_recover :
466466(* Ty = functor_composite (functor_opp (Rezk_eta C _ )) Ty'. *)
467467 TY = ηη TY'.
468468Proof .
469469 set (XR := Rezk_opp_weq C HSET is_univalent_HSET).
470470 assert (XT := homotweqinvweq XR TY).
471471 apply pathsinv0.
472472 apply XT.
473- Defined .
473+ Defined .
474474
475475
476476Let RCequiv : adj_equivalence_of_cats _ := Rezk_op_adj_equiv C
@@ -481,7 +481,7 @@ Proof.
481481 apply functor_category_has_homsets.
482482Defined .
483483
484- Definition RC_pp'_eta :
484+ Definition RC_pp'_eta :
485485 preShv C ⟦ ηη TM' , ηη TY' ⟧.
486486Proof .
487487 apply (# ηη pp').
0 commit comments