File tree Expand file tree Collapse file tree 2 files changed +1
-23
lines changed
Expand file tree Collapse file tree 2 files changed +1
-23
lines changed Original file line number Diff line number Diff line change @@ -38,20 +38,6 @@ Require Import TypeTheory.Auxiliary.CategoryTheory.
3838Require Import TypeTheory.Auxiliary.SetsAndPresheaves.
3939Require Import TypeTheory.ALV1.CwF_def.
4040
41-
42- Section Auxiliary.
43-
44- (* Switch between composition and application for morphisms *)
45- Lemma compose_ap
46- (a b c : SET)
47- (f : a --> b) (g : b --> c) (x : a : hSet)
48- : (f ;; g) x = g (f x).
49- Proof .
50- unfold compose. cbn. apply idpath.
51- Qed .
52-
53- End Auxiliary.
54-
5541Section CwF_structure_cat.
5642 Context {C : category}.
5743
@@ -285,8 +271,7 @@ Section CwF_structure_cat.
285271 refine (maponpaths _ (f3 Γ A) @ _).
286272 etrans. apply nat_trans_ax_pshf.
287273 refine (maponpaths _ (g3 Γ (F_TY $nt A)) @ _).
288- rewrite <- compose_ap, <- (functor_comp (TM Z)).
289- apply idpath.
274+ apply pathsinv0, functor_comp_pshf.
290275 Defined .
291276
292277 (* Prove that two morphisms of CwF structures are equal
Original file line number Diff line number Diff line change @@ -25,13 +25,6 @@ Require Import TypeTheory.ALV1.CwF_SplitTypeCat_Defs.
2525Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
2626Require Import UniMath.CategoryTheory.DisplayedCats.Core.
2727
28-
29- (* TODO: as ever, upstream to [Systems.Auxiliary], and look for in library. *)
30- Section Auxiliary.
31-
32- End Auxiliary.
33-
34-
3528(** Some local notations, *)
3629
3730Local Notation "Γ ◂ A" := (comp_ext _ Γ A) (at level 30).
You can’t perform that action at this time.
0 commit comments