Skip to content

Commit a4b8fe6

Browse files
Switched functor-procategory notation [C,D,has_homsets D] to functor-category notation [C,D] wherever possible
1 parent 4616cd8 commit a4b8fe6

File tree

5 files changed

+17
-22
lines changed

5 files changed

+17
-22
lines changed

TypeTheory/ALV1/RelativeUniverses.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -942,8 +942,8 @@ Definition isweq_weak_relative_universe_transfer
942942
(R_full : full R)
943943
(isD : is_univalent D) (isD' : is_univalent D')
944944
(T : functor D' D)
945-
(eta : iso (C:=[D, D, pr2 D]) (functor_identity D) (S ∙ T))
946-
(eps : iso (C:=[D', D', pr2 D']) (T ∙ S) (functor_identity D'))
945+
(eta : iso (C:=[D, D]) (functor_identity D) (S ∙ T))
946+
(eps : iso (C:=[D', D']) (T ∙ S) (functor_identity D'))
947947
(S_faithful : faithful S)
948948
: isweq weak_relative_universe_transfer.
949949
Proof.
@@ -964,8 +964,8 @@ Definition weq_weak_relative_universe_transfer
964964
(R_full : full R)
965965
(isD : is_univalent D) (isD' : is_univalent D')
966966
(T : functor D' D)
967-
(eta : iso (C:=[D, D, pr2 D]) (functor_identity D) (S ∙ T))
968-
(eps : iso (C:=[D', D', pr2 D']) (T ∙ S) (functor_identity D'))
967+
(eta : iso (C:=[D, D]) (functor_identity D) (S ∙ T))
968+
(eps : iso (C:=[D', D']) (T ∙ S) (functor_identity D'))
969969
(S_ff : fully_faithful S)
970970
: weak_relative_universe J ≃ weak_relative_universe J'
971971
:= make_weq _ (isweq_weak_relative_universe_transfer R_full isD isD' T eta eps S_ff).

TypeTheory/ALV1/Transport_along_Equivs.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ Proof.
113113
Defined.
114114

115115

116-
Definition epsinv : iso (C:=[_ , _ , has_homsets_preShv _ ])
116+
Definition epsinv : iso (C:=[_ , _])
117117
(functor_identity (preShv C)) (ext ∙ Fop_precomp).
118118
Proof.
119119
set (XR':= (counit_iso_from_adj_equivalence_of_precats equiv_Fcomp)).
@@ -122,7 +122,7 @@ Proof.
122122
Defined.
123123

124124

125-
Definition etainv : iso (C:=[ _ , _ , (has_homsets_preShv _ )])
125+
Definition etainv : iso (C:=[ _ , _])
126126
(Fop_precomp ∙ ext) (functor_identity (preShv D)).
127127
Proof.
128128
set (XR := (unit_iso_from_adj_equivalence_of_precats equiv_Fcomp)).

TypeTheory/ALV2/RelUnivTransfer.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -334,8 +334,8 @@ Section RelUniv_Transfer.
334334
Context (R_ses : split_ess_surj R)
335335
(D'_univ : is_univalent D')
336336
(invS : functor D' D)
337-
(eta : iso (C:=[D, D, pr2 D]) (functor_identity D) (S ∙ invS))
338-
(eps : iso (C:=[D', D', pr2 D']) (invS ∙ S) (functor_identity D'))
337+
(eta : iso (C:=[D, D]) (functor_identity D) (S ∙ invS))
338+
(eps : iso (C:=[D', D']) (invS ∙ S) (functor_identity D'))
339339
(S_ff : fully_faithful S).
340340

341341
Let E := ((S,, (invS,, (pr1 eta, pr1 eps)))
@@ -348,10 +348,10 @@ Section RelUniv_Transfer.
348348
Let ε' := pr2 (pr121 AE) : nat_trans (invS ∙ S) (functor_identity _).
349349
Let η := functor_iso_from_pointwise_iso
350350
_ _ _ _ _ η' (pr12 (adjointificiation E))
351-
: iso (C:=[D, D, pr2 D]) (functor_identity D) (S ∙ invS).
351+
: iso (C:=[D, D]) (functor_identity D) (S ∙ invS).
352352
Let ε := functor_iso_from_pointwise_iso
353353
_ _ _ _ _ ε' (pr22 (adjointificiation E))
354-
: iso (C:=[D', D', pr2 D']) (invS ∙ S) (functor_identity D').
354+
: iso (C:=[D', D']) (invS ∙ S) (functor_identity D').
355355

356356
Let ηx := Constructions.pointwise_iso_from_nat_iso (iso_inv_from_iso η).
357357
Let αx := Constructions.pointwise_iso_from_nat_iso (α,,α_is_iso).
@@ -655,8 +655,8 @@ Section WeakRelUniv_Transfer.
655655

656656
(* S is an equivalence *)
657657
Context (T : functor D' D).
658-
Context (η : iso (C := [D, D, pr2 D]) (functor_identity D) (S ∙ T)).
659-
Context (ε : iso (C := [D', D', pr2 D']) (T ∙ S) (functor_identity D')).
658+
Context (η : iso (C := [D, D]) (functor_identity D) (S ∙ T)).
659+
Context (ε : iso (C := [D', D']) (T ∙ S) (functor_identity D')).
660660
Context (S_full : full S).
661661
Context (S_faithful : faithful S).
662662

TypeTheory/Auxiliary/Auxiliary.v

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@ Possibly some should be upstreamed to “UniMath” eventually.
1111
1212
*)
1313

14-
1514
Require Import UniMath.Foundations.PartD.
1615
Require Import UniMath.Foundations.Sets.
1716
Require Import UniMath.Combinatorics.StandardFiniteSets.

TypeTheory/OtherDefs/CwF_Pitts_natural.v

Lines changed: 5 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -30,12 +30,10 @@ Local Notation "C '^op'" := (opp_precat C) (at level 3, format "C ^op").
3030
(** * A "preview" of the definition *)
3131

3232
Module Preview.
33-
34-
Let hsHSET := has_homsets_HSET.
3533

3634
Variable C : precategory.
3735
Variable hs : has_homsets C.
38-
Variable Ty Tm: [C^op, HSET, hsHSET]. (* functor C^op HSET. *)
36+
Variable Ty Tm: [C^op, HSET]. (* functor C^op HSET. *)
3937
Variable p : _ ⟦Tm, Ty⟧. (* needs to be written as mor in a precat *)
4038

4139
Variable comp : forall (Γ : C) (A : pr1hSet ((Ty : functor _ _ ) Γ)), C.
@@ -74,17 +72,15 @@ End Preview.
7472

7573
Section definition.
7674

77-
Let hsHSET := has_homsets_HSET.
78-
7975
Variable C : precategory.
8076
Variable hsC : has_homsets C.
8177

8278
Definition tt_structure : UU :=
83-
∑ TyTm : [C^op, HSET, hsHSET] × [C^op, HSET, hsHSET],
79+
∑ TyTm : [C^op, HSET] × [C^op, HSET],
8480
_ ⟦pr2 TyTm, pr1 TyTm⟧.
8581

86-
Definition Ty (X : tt_structure) : [C^op, HSET, hsHSET] := pr1 (pr1 X).
87-
Definition Tm (X : tt_structure) : [C^op, HSET, hsHSET] := pr2 (pr1 X).
82+
Definition Ty (X : tt_structure) : [C^op, HSET] := pr1 (pr1 X).
83+
Definition Tm (X : tt_structure) : [C^op, HSET] := pr2 (pr1 X).
8884
Definition p (X : tt_structure) : _ ⟦Tm X, Ty X⟧ := pr2 X.
8985

9086
Definition comp_structure (X : tt_structure) : UU :=
@@ -135,4 +131,4 @@ Coercion pullback_structure_from_is_natural_CwF (X : is_natural_CwF) :
135131
pullback_structure (comp_structure_from_is_natural_CwF X) := pr2 (pr2 X).
136132

137133

138-
End definition.
134+
End definition.

0 commit comments

Comments
 (0)