@@ -81,7 +81,7 @@ Local Definition te {Γ : C} (A : Ty Γ : hSet) : tm (#Ty (pi A) A)
8181:= pr12 pr22 CwF _ A.
8282(* proof of pp (te A) = Ty (pi A) A *)
8383Local Definition te' {Γ : C} (A : Ty Γ : hSet) : pp_ _ (te A) = #Ty (pi A) A := pr212 pr22 CwF Γ A.
84- Definition CwF_Pullback {Γ} (A : Ty Γ : hSet) : isPullback (yy A) pp (#Yo (pi A)) (yy(te A)) ( cwf_square_comm (te' A)) := pr22 pr22 CwF Γ A.
84+ Definition CwF_Pullback {Γ} (A : Ty Γ : hSet) : isPullback (cwf_square_comm (te' A)) := pr22 pr22 CwF Γ A.
8585
8686Local Definition tm_transportf {Γ} {A A' : Ty Γ : hSet} (e : A = A')
8787: tm A ≃ tm A'.
@@ -208,17 +208,17 @@ Lemma yonedacarac {Γ Δ : C} (f : _ ⟦Yo Γ,Yo Δ⟧)
208208Proof .
209209 assert (H : (# Yo ((f : nat_trans _ _) Γ (identity Γ)) : nat_trans _ _) Γ (identity Γ)
210210 = (f : nat_trans _ _) Γ (identity Γ)) by apply (id_left _).
211- assert (Map1 : (f : nat_trans _ _) Γ (identity Γ) = yoneda_map_1 C (pr2 C) Γ (Yo(Δ)) f) by reflexivity.
212- assert (Map2 : # Yo ((f : nat_trans _ _) Γ (identity Γ)) = yoneda_map_2 C (pr2 C) Γ (Yo(Δ))
211+ assert (Map1 : (f : nat_trans _ _) Γ (identity Γ) = yoneda_map_1 C Γ (Yo(Δ)) f) by reflexivity.
212+ assert (Map2 : # Yo ((f : nat_trans _ _) Γ (identity Γ)) = yoneda_map_2 C Γ (Yo(Δ))
213213 ((f : nat_trans _ _) Γ (identity Γ))).
214214 - unfold yoneda_map_2; cbn; unfold yoneda_morphisms; unfold yoneda_morphisms_data; cbn.
215- assert (nattrans : is_nat_trans_yoneda_morphisms_data C _ Γ Δ
215+ assert (nattrans : is_nat_trans_yoneda_morphisms_data C Γ Δ
216216 ((f :nat_trans _ _) Γ (identity Γ))
217- = yoneda_map_2_ax C (pr2 C) Γ (yoneda_objects C _ Δ)
217+ = yoneda_map_2_ax C Γ (yoneda_objects C Δ)
218218 ((f : nat_trans _ _) Γ (identity Γ))).
219- -- assert (prop : isaprop(is_nat_trans (yoneda_objects C _ Γ)
220- (yoneda_objects C (homset_property C) Δ)
221- (yoneda_morphisms_data C _ Γ Δ
219+ -- assert (prop : isaprop(is_nat_trans (yoneda_objects C Γ)
220+ (yoneda_objects C Δ)
221+ (yoneda_morphisms_data C Γ Δ
222222 ((f : nat_trans _ _) Γ (identity Γ))))) by (apply isaprop_is_nat_trans;exact (pr2 hset_category));
223223 exact (pr1 (prop _ _)).
224224 -- apply pair_path_in2; apply nattrans.
@@ -231,7 +231,7 @@ Proof.
231231Qed .
232232
233233Lemma yyidentity {Γ : C} {A : Ty Γ : hSet} (B : Ty (Γ.:A) : hSet)
234- : B = (@yy (pr1 C) (pr2 C) Ty (Γ.:A) B : nat_trans _ _) (Γ.:A) (identity (Γ.:A)).
234+ : B = (@yy C Ty (Γ.:A) B : nat_trans _ _) (Γ.:A) (identity (Γ.:A)).
235235Proof .
236236 apply pathsinv0; eapply pathscomp0.
237237 - apply (toforallpaths _ (# Ty _) _ (functor_id Ty (Γ.:A))).
@@ -244,9 +244,9 @@ Section qq.
244244(** morphism between contexts *)
245245
246246Let Xk {Γ : C} (A : Ty Γ : hSet) :=
247- make_Pullback _ _ _ _ _ _ (pr22 pr22 CwF Γ A).
247+ make_Pullback _ (pr22 pr22 CwF Γ A).
248248
249- Local Definition qq_yoneda {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ ⟧)
249+ Local Definition qq_yoneda {Γ Δ : C} (A : Ty Γ : hSet) (f : C ⟦Δ,Γ ⟧)
250250: (preShv C) ⟦Yo (Δ .: (#Ty f A)), Yo (Γ.: A) ⟧.
251251Proof .
252252 use (PullbackArrow (Xk A)).
@@ -278,15 +278,15 @@ Qed.
278278Local Definition qq_term {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
279279: C ⟦ Δ.:(#Ty f A) , Γ.: A⟧.
280280Proof .
281- apply (invweq (make_weq _ (yoneda_fully_faithful _ (homset_property _) _ _ ))) ,
281+ apply (invweq (make_weq _ (yoneda_fully_faithful _ _ _ ))) ,
282282 (qq_yoneda A f).
283283Defined .
284284
285285Lemma qq_yoneda_compatibility {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧) :
286286 #Yo(qq_term A f) = qq_yoneda A f.
287287Proof .
288288 apply (homotweqinvweq
289- (make_weq _ (yoneda_fully_faithful _ (homset_property _) ( _ .:(#Ty f A)) (Γ.:A)))).
289+ (make_weq _ (yoneda_fully_faithful _ ( _ .:(#Ty f A)) (Γ.:A)))).
290290Qed .
291291
292292Lemma qq_term_te {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
@@ -295,18 +295,19 @@ Proof.
295295 assert (Hyp := qq_yoneda_commutes A f).
296296 rewrite <- qq_yoneda_compatibility in Hyp.
297297 apply (pathscomp0 (yy_natural _ _ _ _ _)) in Hyp.
298- apply (invmaponpathsweq (@yy _ (pr2 C) _ _) ).
298+ apply (invmaponpathsweq (@yy _ _ _) ).
299299 exact Hyp.
300300Qed .
301301
302302Lemma qq_term_pullback {Γ Δ :C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
303303: f ;; pi (#Ty f A) = (qq_term A f);; pi A.
304304Proof .
305+ cbn; cbn in f.
305306 assert (XT := (qq_yoneda_commutes_1 A f)).
306307 rewrite <- qq_yoneda_compatibility in XT.
307308 do 2 rewrite <- functor_comp in XT.
308- apply (invmaponpathsweq (make_weq _ (yoneda_fully_faithful _ (homset_property _) _ _ ))).
309- cbn; cbn in XT; exact XT.
309+ apply (invmaponpathsweq (make_weq _ (yoneda_fully_faithful _ _ _ ))).
310+ exact XT.
310311Qed .
311312
312313Section Familly_Of_Types.
@@ -340,8 +341,8 @@ Lemma γNat {Γ Δ : C} {A : Ty Γ : hSet} (f : C^op ⟦Γ,Δ⟧) (a : tm A)
340341Proof .
341342 assert (Yoγ : #Yo ((f : C⟦Δ,Γ⟧) ;; (γ a : nat_trans _ _) Γ (identity Γ)) =
342343 #Yo((γ (reind_tm f a) : nat_trans _ _) Δ (identity Δ) ;; qq_term A f)).
343- - do 2 (rewrite (pr22 (yoneda C (pr2 C) ) _ _ _); rewrite yonedacarac).
344- refine (MorphismsIntoPullbackEqual (CwF_Pullback A)
344+ - do 2 (rewrite (pr22 (yoneda C) _ _ _); rewrite yonedacarac).
345+ cbn in f. refine (MorphismsIntoPullbackEqual (CwF_Pullback A) _
345346 (#Yo f ;; γ a) (γ (reind_tm f a) ;; #Yo (qq_term A f)) _ _).
346347 -- rewrite <- assoc.
347348 eapply pathscomp0.
@@ -360,7 +361,7 @@ Proof.
360361 rewrite (cancel_postcomposition _ _ _
361362 (pr121 ((CwF_Pullback _) (Yo Δ) (identity (Yo Δ))
362363 (yy(#Tm f a)) (Subproof_γ (reind_tm f a) )))).
363- apply (pr1 (pr121 (preShv C)) _ (Yo Γ) (#Yo f)) .
364+ apply id_left .
364365 ** reflexivity.
365366 -- rewrite <- assoc.
366367 apply (pathscomp0 (cancel_precomposition _ _ _ _ _ _ _
@@ -397,14 +398,8 @@ Lemma γPullback2 {Γ : C} (A : Ty Γ : hSet)
397398: γ (te A) ;; #Yo (qq_term A (pi A)) ;; #Yo (pi A) = identity _;;(#Yo (pi A)).
398399Proof .
399400 assert (Eq1 : #Yo (pi (#Ty (pi A) A)) ;; #Yo (pi A) = qq_yoneda A (pi A) ;; #Yo (pi A)) by (
400- rewrite <- (pr121((pr22(make_Pullback (yy A) pp
401- (yoneda (pr1 CwF) (homset_property (pr1 CwF))
402- (Γ.:A))
403- (# (yoneda (pr1 CwF) (homset_property (pr1 CwF)))
404- (pi A))
405- (yy (pr112 (pr22 CwF Γ A)))
406- (cwf_square_comm (pr212 (pr22 CwF Γ A)))
407- (CwF_Pullback A))) (Yo (_ .: (#Ty (pi A) A)))
401+ rewrite <- (pr121((pr22(make_Pullback _ (CwF_Pullback A)))
402+ (Yo (_ .: (#Ty (pi A) A)))
408403 (#Yo (pi (#Ty (pi A) A)) ;; #Yo (pi A)) (yy (te (#Ty (pi A) A)))
409404 (qq_yoneda_subproof Γ (Γ.: A) A (pi A))));
410405 auto).
@@ -425,17 +420,17 @@ Proof.
425420 exact (Yo^-1 (γ a) ;; qq_term A f).
426421Defined .
427422
428- Lemma γ_pi {Γ} {A : Ty Γ: hSet} (a : tm A) : Yo^-1 (γ a) ;; pi A = identity _.
423+ Lemma γ_pi {Γ:C } {A : Ty Γ: hSet} (a : tm A) : Yo^-1 (γ a) ;; pi A = identity _.
429424Proof .
430- assert (Yoeq : #Yo(Yo^-1 (γ a) ;; pi A) = #Yo(identity Γ)).
425+ assert (Yoeq : #Yo(Yo^-1 (γ a) ;; pi A) = #Yo (identity Γ)).
431426 - apply (pathscomp0 (pr22 Yo _ _ _ _ _ )).
432427 apply pathsinv0 , (pathscomp0 (pr12 Yo _)).
433- assert (simplman : identity (pr1 (yoneda C (homset_property C) ) Γ)
428+ assert (simplman : identity (pr1 (yoneda C) Γ)
434429 = identity (Yo Γ)) by auto.
435430 apply (pathscomp0 simplman).
436431 rewrite (!(pull_γ a)).
437432 apply cancel_postcomposition.
438- assert (simplman2 : # (pr1 (yoneda C (homset_property C) )) (Yo^-1 (γ a))
433+ assert (simplman2 : # (pr1 (yoneda C)) (Yo^-1 (γ a))
439434 = #Yo (Yo^-1 (γ a))) by auto.
440435 apply pathsinv0, (pathscomp0 simplman2), invyoneda.
441436 - apply (maponpaths (Yo^-1) ) in Yoeq.
445440
446441Lemma te_subtitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm (Yo^-1(γ a)) (te A) = a.
447442Proof .
448- assert (inter : @yy _ (pr2 C) _ _ (#Tm (Yo^-1(γ a)) (te A)) = yy a).
443+ assert (inter : @yy _ _ _ (#Tm (Yo^-1(γ a)) (te A)) = yy a).
449444 - rewrite yy_natural, invyoneda.
450445 exact (pr221((CwF_Pullback _) (Yo _) (identity _) (yy _) (Subproof_γ _))).
451446 - apply (maponpaths (invmap yy) ) in inter.
@@ -509,20 +504,15 @@ Lemma DepTypesEta {Γ : C} {A : Ty Γ : hSet} (B : Ty (Γ.:A) : hSet)
509504Proof .
510505 assert (Natu : @γ (Γ.:A) (#Ty (pi A) A) (te A) ;; yy (# Ty (qq_term A (pi A)) B)
511506 = @γ (Γ.:A) (#Ty (pi A) A) (te A) ;; #Yo (qq_term A (pi A)) ;;
512- (@yy (@pr1 _ _ C) (@pr2 _ _ C) Ty (Γ .: A)) B).
507+ (@yy _ Ty (Γ .: A)) B).
513508 - rewrite (cancel_precomposition _ _ _ _ (yy (#Ty (qq_term A (pi A)) B))
514509 (#Yo (qq_term A (pi A));; yy B) _).
515510 * rewrite assoc; reflexivity.
516511 * rewrite yy_natural; reflexivity.
517512 - assert (Id: @γ (Γ .: A) (# Ty (@pi Γ A) A) (te A) ;; #Yo (qq_term A (pi A))
518513 = identity _).
519514 * refine (MorphismsIntoPullbackEqual
520- (pr22(make_Pullback (yy A) pp
521- (yoneda (pr1 CwF) (homset_property (pr1 CwF)) (Γ.:A))
522- (# (yoneda (pr1 CwF) (homset_property (pr1 CwF))) (pi A))
523- (yy (te A))
524- (cwf_square_comm (te' A))
525- (CwF_Pullback A)))
515+ (pr22(make_Pullback _ (CwF_Pullback A))) _
526516 (γ (te A) ;; #Yo (qq_term A (pi A))) (identity _) (γPullback2 A) (γPullback1 A)).
527517 * rewrite Id, (id_left _) in Natu.
528518 unfold DepTypesType.
0 commit comments