Skip to content

Commit a9d6b66

Browse files
Adapting to UniMath refactoring precategories: Got all TypeConstructions compiling again
1 parent 4f28ac8 commit a9d6b66

File tree

3 files changed

+76
-108
lines changed

3 files changed

+76
-108
lines changed

TypeTheory/TypeConstructions/CwF_SplitTypeCat_TypeEquiv.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -269,7 +269,7 @@ Proof.
269269
induction eqH.
270270
assert (eqK : K = K') by exact (pr1(pr2 C _ _ _ _ _ _)).
271271
induction eqK.
272-
assert (eqPb: isPb = isPb') by exact (pr1(isaprop_isPullback _ _ _ _ _ _ _)).
272+
assert (eqPb: isPb = isPb') by exact (pr1 (isaprop_isPullback _ _ _ _ _ _ _ _)).
273273
induction eqPb.
274274
reflexivity.
275275
Qed.
@@ -472,4 +472,4 @@ Definition universe_equiv : universe_struct Sc ≃ CwF_universe_struct CWF
472472

473473
End Universe_Equiv.
474474

475-
End Stc_Equiv.
475+
End Stc_Equiv.

TypeTheory/TypeConstructions/CwF_Structure_Display.v

Lines changed: 29 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ Local Definition te {Γ : C} (A : Ty Γ : hSet) : tm (#Ty (pi A) A)
8181
:= pr12 pr22 CwF _ A.
8282
(* proof of pp (te A) = Ty (pi A) A*)
8383
Local Definition te' {Γ : C} (A : Ty Γ : hSet) : pp_ _ (te A) = #Ty (pi A) A := pr212 pr22 CwF Γ A.
84-
Definition CwF_Pullback {Γ} (A : Ty Γ : hSet) : isPullback (yy A) pp (#Yo (pi A)) (yy(te A)) (cwf_square_comm (te' A)) := pr22 pr22 CwF Γ A.
84+
Definition CwF_Pullback {Γ} (A : Ty Γ : hSet) : isPullback (cwf_square_comm (te' A)) := pr22 pr22 CwF Γ A.
8585

8686
Local Definition tm_transportf {Γ} {A A' : Ty Γ : hSet} (e : A = A')
8787
: tm A ≃ tm A'.
@@ -208,17 +208,17 @@ Lemma yonedacarac {Γ Δ : C} (f : _ ⟦Yo Γ,Yo Δ⟧)
208208
Proof.
209209
assert (H : (# Yo ((f : nat_trans _ _) Γ (identity Γ)) : nat_trans _ _) Γ (identity Γ)
210210
= (f : nat_trans _ _) Γ (identity Γ)) by apply (id_left _).
211-
assert (Map1 : (f : nat_trans _ _) Γ (identity Γ) = yoneda_map_1 C (pr2 C) Γ (Yo(Δ)) f) by reflexivity.
212-
assert (Map2 : # Yo ((f : nat_trans _ _) Γ (identity Γ)) = yoneda_map_2 C (pr2 C) Γ (Yo(Δ))
211+
assert (Map1 : (f : nat_trans _ _) Γ (identity Γ) = yoneda_map_1 C Γ (Yo(Δ)) f) by reflexivity.
212+
assert (Map2 : # Yo ((f : nat_trans _ _) Γ (identity Γ)) = yoneda_map_2 C Γ (Yo(Δ))
213213
((f : nat_trans _ _) Γ (identity Γ))).
214214
- unfold yoneda_map_2; cbn; unfold yoneda_morphisms; unfold yoneda_morphisms_data; cbn.
215-
assert (nattrans : is_nat_trans_yoneda_morphisms_data C _ Γ Δ
215+
assert (nattrans : is_nat_trans_yoneda_morphisms_data C Γ Δ
216216
((f :nat_trans _ _) Γ (identity Γ))
217-
= yoneda_map_2_ax C (pr2 C) Γ (yoneda_objects C _ Δ)
217+
= yoneda_map_2_ax C Γ (yoneda_objects C Δ)
218218
((f : nat_trans _ _) Γ (identity Γ))).
219-
-- assert (prop : isaprop(is_nat_trans (yoneda_objects C _ Γ)
220-
(yoneda_objects C (homset_property C) Δ)
221-
(yoneda_morphisms_data C _ Γ Δ
219+
-- assert (prop : isaprop(is_nat_trans (yoneda_objects C Γ)
220+
(yoneda_objects C Δ)
221+
(yoneda_morphisms_data C Γ Δ
222222
((f : nat_trans _ _) Γ (identity Γ))))) by (apply isaprop_is_nat_trans;exact (pr2 hset_category));
223223
exact (pr1 (prop _ _)).
224224
-- apply pair_path_in2; apply nattrans.
@@ -231,7 +231,7 @@ Proof.
231231
Qed.
232232

233233
Lemma yyidentity {Γ : C} {A : Ty Γ : hSet} (B : Ty (Γ.:A) : hSet)
234-
: B = (@yy (pr1 C) (pr2 C) Ty (Γ.:A) B : nat_trans _ _) (Γ.:A) (identity (Γ.:A)).
234+
: B = (@yy C Ty (Γ.:A) B : nat_trans _ _) (Γ.:A) (identity (Γ.:A)).
235235
Proof.
236236
apply pathsinv0; eapply pathscomp0.
237237
- apply (toforallpaths _ (# Ty _) _ (functor_id Ty (Γ.:A))).
@@ -244,9 +244,9 @@ Section qq.
244244
(** morphism between contexts *)
245245

246246
Let Xk {Γ : C} (A : Ty Γ : hSet) :=
247-
make_Pullback _ _ _ _ _ _ (pr22 pr22 CwF Γ A).
247+
make_Pullback _ (pr22 pr22 CwF Γ A).
248248

249-
Local Definition qq_yoneda {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
249+
Local Definition qq_yoneda {Γ Δ : C} (A : Ty Γ : hSet) (f : C ⟦Δ,Γ⟧)
250250
: (preShv C) ⟦Yo (Δ .: (#Ty f A)), Yo (Γ.: A) ⟧.
251251
Proof.
252252
use (PullbackArrow (Xk A)).
@@ -278,15 +278,15 @@ Qed.
278278
Local Definition qq_term {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
279279
: C ⟦ Δ.:(#Ty f A) , Γ.: A⟧.
280280
Proof.
281-
apply (invweq (make_weq _ (yoneda_fully_faithful _ (homset_property _) _ _ ))) ,
281+
apply (invweq (make_weq _ (yoneda_fully_faithful _ _ _ ))) ,
282282
(qq_yoneda A f).
283283
Defined.
284284

285285
Lemma qq_yoneda_compatibility {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧) :
286286
#Yo(qq_term A f) = qq_yoneda A f.
287287
Proof.
288288
apply (homotweqinvweq
289-
(make_weq _ (yoneda_fully_faithful _ (homset_property _) ( _ .:(#Ty f A)) (Γ.:A)))).
289+
(make_weq _ (yoneda_fully_faithful _ ( _ .:(#Ty f A)) (Γ.:A)))).
290290
Qed.
291291

292292
Lemma qq_term_te {Γ Δ : C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
@@ -295,18 +295,19 @@ Proof.
295295
assert (Hyp := qq_yoneda_commutes A f).
296296
rewrite <- qq_yoneda_compatibility in Hyp.
297297
apply (pathscomp0 (yy_natural _ _ _ _ _)) in Hyp.
298-
apply (invmaponpathsweq (@yy _ (pr2 C) _ _) ).
298+
apply (invmaponpathsweq (@yy _ _ _) ).
299299
exact Hyp.
300300
Qed.
301301

302302
Lemma qq_term_pullback {Γ Δ :C} (A : Ty Γ : hSet) (f : C^op ⟦Γ,Δ⟧)
303303
: f ;; pi (#Ty f A) = (qq_term A f);; pi A.
304304
Proof.
305+
cbn; cbn in f.
305306
assert (XT := (qq_yoneda_commutes_1 A f)).
306307
rewrite <- qq_yoneda_compatibility in XT.
307308
do 2 rewrite <- functor_comp in XT.
308-
apply (invmaponpathsweq (make_weq _ (yoneda_fully_faithful _ (homset_property _) _ _ ))).
309-
cbn; cbn in XT; exact XT.
309+
apply (invmaponpathsweq (make_weq _ (yoneda_fully_faithful _ _ _ ))).
310+
exact XT.
310311
Qed.
311312

312313
Section Familly_Of_Types.
@@ -340,8 +341,8 @@ Lemma γNat {Γ Δ : C} {A : Ty Γ : hSet} (f : C^op ⟦Γ,Δ⟧) (a : tm A)
340341
Proof.
341342
assert (Yoγ : #Yo ((f : C⟦Δ,Γ⟧) ;; (γ a : nat_trans _ _) Γ (identity Γ)) =
342343
#Yo((γ (reind_tm f a) : nat_trans _ _) Δ (identity Δ) ;; qq_term A f)).
343-
- do 2 (rewrite (pr22 (yoneda C (pr2 C)) _ _ _); rewrite yonedacarac).
344-
refine (MorphismsIntoPullbackEqual (CwF_Pullback A)
344+
- do 2 (rewrite (pr22 (yoneda C) _ _ _); rewrite yonedacarac).
345+
cbn in f. refine (MorphismsIntoPullbackEqual (CwF_Pullback A) _
345346
(#Yo f ;; γ a) (γ (reind_tm f a) ;; #Yo (qq_term A f)) _ _).
346347
-- rewrite <- assoc.
347348
eapply pathscomp0.
@@ -360,7 +361,7 @@ Proof.
360361
rewrite (cancel_postcomposition _ _ _
361362
(pr121 ((CwF_Pullback _) (Yo Δ) (identity (Yo Δ))
362363
(yy(#Tm f a)) (Subproof_γ (reind_tm f a) )))).
363-
apply (pr1 (pr121 (preShv C)) _ (Yo Γ) (#Yo f)).
364+
apply id_left.
364365
** reflexivity.
365366
-- rewrite <- assoc.
366367
apply (pathscomp0 (cancel_precomposition _ _ _ _ _ _ _
@@ -397,14 +398,8 @@ Lemma γPullback2 {Γ : C} (A : Ty Γ : hSet)
397398
: γ (te A) ;; #Yo (qq_term A (pi A)) ;; #Yo (pi A) = identity _;;(#Yo (pi A)).
398399
Proof.
399400
assert (Eq1 : #Yo (pi (#Ty (pi A) A)) ;; #Yo (pi A) = qq_yoneda A (pi A) ;; #Yo (pi A)) by (
400-
rewrite <- (pr121((pr22(make_Pullback (yy A) pp
401-
(yoneda (pr1 CwF) (homset_property (pr1 CwF))
402-
(Γ.:A))
403-
(# (yoneda (pr1 CwF) (homset_property (pr1 CwF)))
404-
(pi A))
405-
(yy (pr112 (pr22 CwF Γ A)))
406-
(cwf_square_comm (pr212 (pr22 CwF Γ A)))
407-
(CwF_Pullback A))) (Yo (_ .: (#Ty (pi A) A)))
401+
rewrite <- (pr121((pr22(make_Pullback _ (CwF_Pullback A)))
402+
(Yo (_ .: (#Ty (pi A) A)))
408403
(#Yo (pi (#Ty (pi A) A)) ;; #Yo (pi A)) (yy (te (#Ty (pi A) A)))
409404
(qq_yoneda_subproof Γ (Γ.: A) A (pi A))));
410405
auto).
@@ -425,17 +420,17 @@ Proof.
425420
exact (Yo^-1 (γ a) ;; qq_term A f).
426421
Defined.
427422

428-
Lemma γ_pi {Γ} {A : Ty Γ: hSet} (a : tm A) : Yo^-1 (γ a) ;; pi A = identity _.
423+
Lemma γ_pi {Γ:C} {A : Ty Γ: hSet} (a : tm A) : Yo^-1 (γ a) ;; pi A = identity _.
429424
Proof.
430-
assert (Yoeq : #Yo(Yo^-1 (γ a) ;; pi A) = #Yo(identity Γ)).
425+
assert (Yoeq : #Yo(Yo^-1 (γ a) ;; pi A) = #Yo (identity Γ)).
431426
- apply (pathscomp0 (pr22 Yo _ _ _ _ _ )).
432427
apply pathsinv0 , (pathscomp0 (pr12 Yo _)).
433-
assert (simplman : identity (pr1 (yoneda C (homset_property C)) Γ)
428+
assert (simplman : identity (pr1 (yoneda C) Γ)
434429
= identity (Yo Γ)) by auto.
435430
apply (pathscomp0 simplman).
436431
rewrite (!(pull_γ a)).
437432
apply cancel_postcomposition.
438-
assert (simplman2 : # (pr1 (yoneda C (homset_property C))) (Yo^-1 (γ a))
433+
assert (simplman2 : # (pr1 (yoneda C)) (Yo^-1 (γ a))
439434
= #Yo (Yo^-1 (γ a))) by auto.
440435
apply pathsinv0, (pathscomp0 simplman2), invyoneda.
441436
- apply (maponpaths (Yo^-1) ) in Yoeq.
@@ -445,7 +440,7 @@ Qed.
445440

446441
Lemma te_subtitution {Γ} {A : Ty Γ : hSet} (a : tm A) : #Tm (Yo^-1(γ a)) (te A) = a.
447442
Proof.
448-
assert (inter : @yy _ (pr2 C) _ _ (#Tm (Yo^-1(γ a)) (te A)) = yy a).
443+
assert (inter : @yy _ _ _ (#Tm (Yo^-1(γ a)) (te A)) = yy a).
449444
- rewrite yy_natural, invyoneda.
450445
exact (pr221((CwF_Pullback _) (Yo _) (identity _) (yy _) (Subproof_γ _))).
451446
- apply (maponpaths (invmap yy) ) in inter.
@@ -509,20 +504,15 @@ Lemma DepTypesEta {Γ : C} {A : Ty Γ : hSet} (B : Ty (Γ.:A) : hSet)
509504
Proof.
510505
assert (Natu : @γ (Γ.:A) (#Ty (pi A) A) (te A) ;; yy (# Ty (qq_term A (pi A)) B)
511506
= @γ (Γ.:A) (#Ty (pi A) A) (te A) ;; #Yo (qq_term A (pi A)) ;;
512-
(@yy (@pr1 _ _ C) (@pr2 _ _ C) Ty (Γ .: A)) B).
507+
(@yy _ Ty (Γ .: A)) B).
513508
- rewrite (cancel_precomposition _ _ _ _ (yy (#Ty (qq_term A (pi A)) B))
514509
(#Yo (qq_term A (pi A));; yy B) _).
515510
* rewrite assoc; reflexivity.
516511
* rewrite yy_natural; reflexivity.
517512
- assert (Id: @γ (Γ .: A) (# Ty (@pi Γ A) A) (te A) ;; #Yo (qq_term A (pi A))
518513
= identity _).
519514
* refine (MorphismsIntoPullbackEqual
520-
(pr22(make_Pullback (yy A) pp
521-
(yoneda (pr1 CwF) (homset_property (pr1 CwF)) (Γ.:A))
522-
(# (yoneda (pr1 CwF) (homset_property (pr1 CwF))) (pi A))
523-
(yy (te A))
524-
(cwf_square_comm (te' A))
525-
(CwF_Pullback A)))
515+
(pr22(make_Pullback _ (CwF_Pullback A))) _
526516
(γ (te A) ;; #Yo (qq_term A (pi A))) (identity _) (γPullback2 A) (γPullback1 A)).
527517
* rewrite Id, (id_left _) in Natu.
528518
unfold DepTypesType.

0 commit comments

Comments
 (0)