Skip to content

Commit da131f2

Browse files
Made more args of [toforallpaths] implicit
1 parent 56247f5 commit da131f2

18 files changed

+123
-141
lines changed

TypeTheory/ALV1/CwF_SplitTypeCat_Cats_Standalone.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ Proof.
8080
intros Γ'; simpl in Γ'.
8181
unfold yoneda_objects_ob. apply funextsec; intros f.
8282
etrans.
83-
use (toforallpaths _ _ _ (nat_trans_ax (term_fun_mor_TM FF) _)).
83+
use (toforallpaths (nat_trans_ax (term_fun_mor_TM FF) _)).
8484
cbn. apply maponpaths, term_fun_mor_te.
8585
Qed.
8686

@@ -106,7 +106,7 @@ Lemma term_to_section_naturality {Y} {Y'}
106106
{Γ : C} (t : Tm Y Γ) (A := (pp Y : nat_trans _ _) _ t)
107107
: pr1 (term_to_section ((term_fun_mor_TM FY : nat_trans _ _) _ t))
108108
= pr1 (term_to_section t)
109-
;; Δ (!toforallpaths _ _ _ (nat_trans_eq_pointwise (term_fun_mor_pp FY) Γ) t).
109+
;; Δ (!toforallpaths (nat_trans_eq_pointwise (term_fun_mor_pp FY) Γ) t).
110110
Proof.
111111
set (t' := (term_fun_mor_TM FY : nat_trans _ _) _ t).
112112
set (A' := (pp Y' : nat_trans _ _) _ t').
@@ -123,7 +123,7 @@ Proof.
123123
etrans. apply Q_comp_ext_compare.
124124
etrans. apply @pathsinv0.
125125
set (H1 := nat_trans_eq_pointwise (term_fun_mor_Q FY A) Γ).
126-
exact (toforallpaths _ _ _ H1 _).
126+
exact (toforallpaths H1 _).
127127
cbn. apply maponpaths. apply term_to_section_recover.
128128
Qed.
129129

@@ -336,7 +336,7 @@ Proof.
336336
- etrans. apply qq_π.
337337
apply pathsinv0, qq_π.
338338
- etrans. cbn. apply maponpaths, @pathsinv0, (term_fun_mor_te FY).
339-
etrans. use (toforallpaths _ _ _ (!nat_trans_ax (term_fun_mor_TM _) _)).
339+
etrans. use (toforallpaths (!nat_trans_ax (term_fun_mor_TM _) _)).
340340
etrans. cbn. apply maponpaths, @pathsinv0, W.
341341
etrans. apply term_fun_mor_te.
342342
apply W'.
@@ -601,8 +601,8 @@ Proof.
601601
apply funextsec; intros A.
602602
etrans. apply transportf_pshf.
603603
etrans.
604-
refine (toforallpaths _ _ _ _ (te _ _)).
605-
refine (toforallpaths _ _ _ _ _).
604+
refine (toforallpaths _ (te _ _)).
605+
refine (toforallpaths _ _).
606606
apply maponpaths, idtoiso_iso_to_TM_eq.
607607
apply term_fun_mor_te.
608608
Qed.

TypeTheory/ALV1/CwF_SplitTypeCat_Defs.v

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -210,9 +210,9 @@ Section Obj_Ext_Structures_Disp_Utility_Lemmas.
210210
Proof.
211211
etrans.
212212
{ unfold φ. apply maponpaths.
213-
refine (toforallpaths _ _ _ _ _).
213+
refine (toforallpaths _ _).
214214
etrans.
215-
{ refine (toforallpaths _ _ _ _ _); refine (transportf_forall _ _ _). }
215+
{ refine (toforallpaths _ _); refine (transportf_forall _ _ _). }
216216
simpl. refine (transportf_forall _ _ _).
217217
}
218218
etrans. { use (pr1_transportf (nat_trans _ _)). }
@@ -494,7 +494,7 @@ Proof.
494494
set (Pb := isPullback_preShv_to_pointwise (isPullback_Q_pp Y A) Γ).
495495
simpl in Pb.
496496
apply (pullback_HSET_univprop_elements _ Pb).
497-
exact (toforallpaths _ _ _ (functor_id (TY X) _) A).
497+
exact (toforallpaths (functor_id (TY X) _) A).
498498
Qed.
499499

500500
Lemma term_to_section {Y : term_fun_structure} {Γ:C} (t : Tm Y Γ)
@@ -597,12 +597,12 @@ Definition qq_morphism_axioms (Z : qq_morphism_data) : UU
597597
:=
598598
(∏ Γ A,
599599
qq Z (identity Γ) A
600-
= Δ (toforallpaths _ _ _ (functor_id (TY X) _ ) _ ))
600+
= Δ (toforallpaths (functor_id (TY X) _ ) _ ))
601601
×
602602
(∏ Γ Γ' Γ'' (f : C⟦Γ', Γ⟧) (g : C ⟦Γ'', Γ'⟧) (A : (TY X:functor _ _ ) Γ : hSet),
603603
qq Z (g ;; f) A
604604
= Δ
605-
(toforallpaths _ _ _ (functor_comp (TY X) _ _) A)
605+
(toforallpaths (functor_comp (TY X) _ _) A)
606606
;; qq Z g (A [f])
607607
;; qq Z f A).
608608

@@ -618,14 +618,14 @@ Coercion qq_morphism_data_from_structure :
618618
Definition qq_id (Z : qq_morphism_structure)
619619
{Γ} (A : Ty X Γ)
620620
: qq Z (identity Γ) A
621-
= Δ (toforallpaths _ _ _ (functor_id (TY X) _ ) _ )
621+
= Δ (toforallpaths (functor_id (TY X) _ ) _ )
622622
:= pr1 (pr2 Z) _ _.
623623

624624
Definition qq_comp (Z : qq_morphism_structure)
625625
{Γ Γ' Γ'' : C}
626626
(f : C ⟦ Γ', Γ ⟧) (g : C ⟦ Γ'', Γ' ⟧) (A : Ty X Γ)
627627
: qq Z (g ;; f) A
628-
= Δ (toforallpaths _ _ _ (functor_comp (TY X) _ _) A)
628+
= Δ (toforallpaths (functor_comp (TY X) _ _) A)
629629
;; qq Z g (A [f]) ;; qq Z f A
630630
:= pr2 (pr2 Z) _ _ _ _ _ _.
631631

TypeTheory/ALV1/CwF_SplitTypeCat_Equivalence.v

Lines changed: 12 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -49,8 +49,8 @@ Proof.
4949
apply funextsec; intros [A [s e]].
5050
unfold canonical_TM_to_given_data; cbn.
5151
etrans. apply maponpaths, (pr2 Y).
52-
etrans. apply (toforallpaths _ _ _ (!functor_comp (TM Y) _ _ ) _).
53-
etrans. 2: { apply (toforallpaths _ _ _ (functor_comp (TM Y) _ _ ) _). }
52+
etrans. apply (toforallpaths (!functor_comp (TM Y) _ _ ) _).
53+
etrans. 2: { apply (toforallpaths (functor_comp (TM Y) _ _ ) _). }
5454
apply maponpaths_2.
5555
apply (@PullbackArrow_PullbackPr2 C _ _ _ _ _ (make_Pullback _ _)).
5656
Qed.
@@ -86,11 +86,11 @@ Proof.
8686
apply nat_trans_eq. apply homset_property.
8787
intros Γ; simpl in Γ. apply funextsec; intros [A [s e]].
8888
cbn. unfold canonical_TM_to_given_data.
89-
etrans. apply (toforallpaths _ _ _ (nat_trans_ax (pp Y) s)).
89+
etrans. apply (toforallpaths (nat_trans_ax (pp Y) s)).
9090
etrans. cbn. apply maponpaths, pp_te.
91-
etrans. apply (toforallpaths _ _ _ (!functor_comp (TY X) _ _) _).
91+
etrans. apply (toforallpaths (!functor_comp (TY X) _ _) _).
9292
etrans. apply maponpaths_2, e.
93-
apply (toforallpaths _ _ _ (functor_id (TY X) _ ) _).
93+
apply (toforallpaths (functor_id (TY X) _ ) _).
9494
Qed.
9595

9696
(* Functions between sets [f : X <--> Y : g] are inverse iff they are _adjoint_, in that [ f x = y <-> x = f y ] for all x, y.
@@ -104,9 +104,8 @@ Proof.
104104
intros H.
105105
(* This [assert] is to enable the [destruct eA] below. *)
106106
assert (eA : (pp Y : nat_trans _ _) _ t = A). {
107-
etrans. apply maponpaths, (!H).
108-
use (toforallpaths _ _ _
109-
(nat_trans_eq_pointwise pp_canonical_TM_to_given _)).
107+
etrans. { apply maponpaths, (!H). }
108+
use (toforallpaths (nat_trans_eq_pointwise pp_canonical_TM_to_given _)).
110109
}
111110
use total2_paths_f.
112111
exact (!eA).
@@ -175,17 +174,17 @@ Lemma canonical_TM_to_given_te {Γ:C} A
175174
Proof.
176175
cbn. unfold canonical_TM_to_given_data. cbn.
177176
etrans. apply maponpaths, (pr2 Y).
178-
etrans. use (toforallpaths _ _ _ (!functor_comp (TM Y) _ _ )).
177+
etrans. use (toforallpaths (!functor_comp (TM Y) _ _ )).
179178
etrans. apply maponpaths_2; cbn.
180179
apply (PullbackArrow_PullbackPr2 (make_Pullback _ _)).
181-
apply (toforallpaths _ _ _ (functor_id (TM Y) _) _).
180+
apply (toforallpaths (functor_id (TM Y) _) _).
182181
Qed.
183182

184183
Lemma given_TM_to_canonical_te {Γ:C} A
185184
: (given_TM_to_canonical : nat_trans _ _) (Γ ◂ A) (te Y A) = (te_from_qq Z A).
186185
Proof.
187186
etrans.
188-
2: { exact (toforallpaths _ _ _ (canonical_to_given_to_canonical _) _). }
187+
2: { exact (toforallpaths (canonical_to_given_to_canonical _) _). }
189188
cbn. apply maponpaths, @pathsinv0, canonical_TM_to_given_te.
190189
Qed.
191190

@@ -227,10 +226,10 @@ Proof.
227226
etrans. apply transportf_isotoid_pshf.
228227
cbn. unfold canonical_TM_to_given_data. cbn.
229228
etrans. apply maponpaths, YH.
230-
etrans. use (toforallpaths _ _ _ (!functor_comp tm _ _ )).
229+
etrans. use (toforallpaths (!functor_comp tm _ _ )).
231230
etrans. apply maponpaths_2; cbn.
232231
apply (PullbackArrow_PullbackPr2 (make_Pullback _ _)).
233-
apply (toforallpaths _ _ _ (functor_id tm _) _).
232+
apply (toforallpaths (functor_id tm _) _).
234233
Defined.
235234

236235
(** * Every compatible q-morphism structure is equal to the canonical one *)

TypeTheory/ALV1/CwF_SplitTypeCat_Maps.v

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -90,12 +90,12 @@ Proof.
9090
intros Γ''. cbn. unfold yoneda_objects_ob, yoneda_morphisms_data.
9191
apply funextsec; intros g.
9292
etrans. apply maponpaths, H.
93-
use (toforallpaths _ _ _ (!functor_comp (TM Y) _ _)).
93+
use (toforallpaths (!functor_comp (TM Y) _ _)).
9494
- assert (H' := nat_trans_eq_pointwise H); clear H.
95-
assert (H'' := toforallpaths _ _ _ (H' _) (identity _)); clear H'.
95+
assert (H'' := toforallpaths (H' _) (identity _)); clear H'.
9696
cbn in H''; unfold yoneda_morphisms_data in H''.
9797
refine (_ @ H'' @ _).
98-
+ use (toforallpaths _ _ _ (!functor_id (TM Y) _)).
98+
+ use (toforallpaths (!functor_id (TM Y) _)).
9999
+ apply maponpaths_2, id_left.
100100
Qed.
101101

@@ -127,7 +127,7 @@ Proof.
127127
etrans. 2: { apply id_left. }
128128
apply maponpaths_2.
129129
exact (pr2 (term_to_section _)).
130-
- etrans. refine (!toforallpaths _ _ _ (nat_trans_eq_pointwise (W' _ _ _ _) _) _).
130+
- etrans. refine (!toforallpaths (nat_trans_eq_pointwise (W' _ _ _ _) _) _).
131131
etrans. apply Q_comp_ext_compare.
132132
apply term_to_section_recover.
133133
Qed.
@@ -223,14 +223,14 @@ Proof.
223223
split; [unfold functor_idax | unfold functor_compax].
224224
- intro Γ; apply funextsec; intro t. destruct t as [A [s e]]; cbn.
225225
use tm_from_qq_eq; simpl.
226-
+ exact (toforallpaths _ _ _ (functor_id (TY X) _ ) A).
226+
+ exact (toforallpaths (functor_id (TY X) _ ) A).
227227
+ etrans. apply maponpaths, @pathsinv0, qq_id.
228228
etrans. apply (PullbackArrow_PullbackPr2 (make_Pullback _ _)).
229229
apply id_left.
230230
- intros Γ Γ' Γ'' f g; apply funextsec; intro t.
231231
destruct t as [A [s e]]; cbn in *.
232232
use tm_from_qq_eq; simpl.
233-
+ exact (toforallpaths _ _ _ (functor_comp (TY X) _ _) A).
233+
+ exact (toforallpaths (functor_comp (TY X) _ _) A).
234234
+ {
235235
apply PullbackArrowUnique; cbn.
236236
- rewrite <- assoc.
@@ -390,7 +390,7 @@ Proof.
390390
use tm_from_qq_eq. cbn.
391391
+ etrans.
392392
apply @pathsinv0.
393-
use (toforallpaths _ _ _ (functor_comp (TY X) _ _ ) A).
393+
use (toforallpaths (functor_comp (TY X) _ _ ) A).
394394
apply maponpaths_2.
395395
cbn.
396396
etrans. apply @pathsinv0, assoc.
@@ -471,8 +471,8 @@ Proof.
471471
intros ? ? ? ?.
472472
(* TODO: use [tm_from_qq_eq'] here *)
473473
use tm_from_qq_eq; simpl.
474-
- etrans. apply (toforallpaths _ _ _ (!functor_comp (TY X) _ _ ) A).
475-
etrans. 2: { apply (toforallpaths _ _ _ (functor_comp (TY X) _ _ ) A). }
474+
- etrans. apply (toforallpaths (!functor_comp (TY X) _ _ ) A).
475+
etrans. 2: { apply (toforallpaths (functor_comp (TY X) _ _ ) A). }
476476
apply maponpaths_2; cbn.
477477
apply @pathsinv0, qq_π.
478478
- apply PullbackArrowUnique.

TypeTheory/ALV1/CwF_def.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -137,11 +137,11 @@ Lemma cwf_square_comm_converse {Γ : C} {A : Ty pp Γ : hSet}
137137
: ((pp : _ --> _) : nat_trans _ _) _ t = # (Ty pp) π A.
138138
Proof.
139139
etrans.
140-
apply maponpaths, @pathsinv0.
141-
apply (toforallpaths _ _ _ (functor_id (Tm pp) _)).
140+
{ apply maponpaths, pathsinv0, (toforallpaths (functor_id (Tm pp) _)). }
142141
etrans.
143-
assert (e' := nat_trans_eq_pointwise e ΓA); clear e; cbn in e'.
144-
use (toforallpaths _ _ _ (!e') (identity _)).
142+
{ assert (e' := nat_trans_eq_pointwise e ΓA); clear e; cbn in e'.
143+
refine (toforallpaths (!e') (identity _)).
144+
}
145145
unfold yoneda_morphisms_data.
146146
apply maponpaths_2, id_left.
147147
Qed.
@@ -215,8 +215,8 @@ Proof.
215215
rewrite id_right.
216216
etrans. { apply yoneda_postcompose. }
217217
etrans. {
218-
refine (toforallpaths _ _ _ _ (identity _)).
219-
refine (toforallpaths _ _ _ _ _).
218+
refine (toforallpaths _ (identity _)).
219+
refine (toforallpaths _ _).
220220
apply maponpaths,
221221
(PullbackArrow_PullbackPr1 (make_Pullback _ (pr22 x))).
222222
}

TypeTheory/ALV2/CwF_Cats.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -283,7 +283,7 @@ Section CwF_structure_cat.
283283
set (A' := (F_TY : nat_trans _ _) _ A).
284284
unfold cwf_structure_mor_term_axiom in f3, g3. simpl in f3, g3.
285285
refine (maponpaths _ (f3 Γ A) @ _).
286-
etrans. apply (toforallpaths _ _ _ (nat_trans_ax F_TM' _)).
286+
etrans. apply (toforallpaths (nat_trans_ax F_TM' _)).
287287
refine (maponpaths _ (g3 Γ A') @ _).
288288
rewrite <- compose_ap, <- (functor_comp (TM Z)).
289289
apply idpath.

TypeTheory/ALV2/CwF_SplitTypeCat_Cats.v

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -155,9 +155,9 @@ Proof.
155155
(* Insert [cbn] to see what’s actually happening; removed for compile speed. *)
156156
unfold yoneda_objects_ob. apply funextsec; intros f.
157157
etrans.
158-
use (toforallpaths _ _ _ (nat_trans_ax (term_fun_mor_TM FF) _)).
158+
use (toforallpaths (nat_trans_ax (term_fun_mor_TM FF) _)).
159159
etrans. cbn. apply maponpaths, term_fun_mor_te.
160-
use (toforallpaths _ _ _ (!functor_comp (TM Y') _ _ )).
160+
use (toforallpaths (!functor_comp (TM Y') _ _ )).
161161
Qed.
162162

163163
(* TODO: inline in [isaprop_term_fun_mor]? *)
@@ -182,7 +182,7 @@ Lemma term_to_section_naturality {X X'} {Y} {Y'}
182182
{Γ : C} (t : Tm Y Γ) (A := (pp Y : nat_trans _ _) _ t)
183183
: pr1 (term_to_section ((term_fun_mor_TM FY : nat_trans _ _) _ t))
184184
= pr1 (term_to_section t) ;; φ F _
185-
;; Δ (!toforallpaths _ _ _ (nat_trans_eq_pointwise (term_fun_mor_pp FY) Γ) t).
185+
;; Δ (!toforallpaths (nat_trans_eq_pointwise (term_fun_mor_pp FY) Γ) t).
186186
Proof.
187187
set (t' := (term_fun_mor_TM FY : nat_trans _ _) _ t).
188188
set (A' := (pp Y' : nat_trans _ _) _ t').
@@ -202,7 +202,7 @@ Proof.
202202
etrans. apply Q_comp_ext_compare.
203203
etrans. apply @pathsinv0.
204204
set (H1 := nat_trans_eq_pointwise (term_fun_mor_Q FY A) Γ).
205-
exact (toforallpaths _ _ _ H1 _).
205+
exact (toforallpaths H1 _).
206206
cbn. apply maponpaths. apply term_to_section_recover.
207207
Qed.
208208

@@ -249,7 +249,7 @@ Proof.
249249
exists (identity _). apply tpair.
250250
+ etrans. apply id_left. apply pathsinv0, id_right.
251251
+ intros Γ A; cbn.
252-
use (toforallpaths _ _ _ (!functor_id (TM _) _)).
252+
use (toforallpaths (!functor_id (TM _) _)).
253253
- intros X0 X1 X2 F G Y0 Y1 Y2 FF GG.
254254
exists (term_fun_mor_TM FF ;; term_fun_mor_TM GG). apply tpair.
255255
+ etrans. apply @pathsinv0. apply assoc.
@@ -259,10 +259,10 @@ Proof.
259259
apply pathsinv0. apply assoc.
260260
+ intros Γ A.
261261
etrans. cbn. apply maponpaths, term_fun_mor_te.
262-
etrans. use (toforallpaths _ _ _
262+
etrans. use (toforallpaths
263263
(nat_trans_ax (term_fun_mor_TM _) _)).
264264
etrans. cbn. apply maponpaths, term_fun_mor_te.
265-
use (toforallpaths _ _ _ (!functor_comp (TM _) _ _)).
265+
use (toforallpaths (!functor_comp (TM _) _ _)).
266266
Defined.
267267

268268
Definition term_fun_data : disp_cat_data (obj_ext_cat C)

TypeTheory/ALV2/CwF_SplitTypeCat_Equiv_Cats.v

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ Lemma comp_ext_compare_te
140140
: # (TM Y : functor _ _) (Δ e) (te Y A') = te Y A.
141141
Proof.
142142
destruct e; cbn.
143-
exact (toforallpaths _ _ _ (functor_id (TM _) _) _).
143+
exact (toforallpaths (functor_id (TM _) _) _).
144144
Qed.
145145

146146
Lemma qq_from_term_mor {X X' : obj_ext_cat C} {F : X --> X'}
@@ -166,16 +166,16 @@ Proof.
166166
etrans. apply @pathsinv0, assoc.
167167
etrans. apply maponpaths. apply comp_ext_compare_π.
168168
apply obj_ext_mor_ax.
169-
- etrans. exact (toforallpaths _ _ _ (functor_comp (TM _) _ _) _).
169+
- etrans. exact (toforallpaths (functor_comp (TM _) _ _) _).
170170
etrans. cbn. apply maponpaths, @pathsinv0, (term_fun_mor_te FY).
171-
etrans. use (toforallpaths _ _ _
171+
etrans. use (toforallpaths
172172
(!nat_trans_ax (term_fun_mor_TM _) _)).
173173
etrans. cbn. apply maponpaths, @pathsinv0, W.
174174
etrans. apply term_fun_mor_te.
175175
apply pathsinv0.
176-
etrans. exact (toforallpaths _ _ _ (functor_comp (TM _) _ _) _).
176+
etrans. exact (toforallpaths (functor_comp (TM _) _ _) _).
177177
etrans. cbn. apply maponpaths, @pathsinv0, W'.
178-
etrans. exact (toforallpaths _ _ _ (functor_comp (TM _) _ _) _).
178+
etrans. exact (toforallpaths (functor_comp (TM _) _ _) _).
179179
cbn. apply maponpaths.
180180
apply comp_ext_compare_te.
181181
Time Qed.
@@ -239,7 +239,7 @@ Proof.
239239
intros Γ Γ' f; cbn in Γ, Γ', f.
240240
apply funextsec; intros [A [s e]].
241241
use tm_from_qq_eq.
242-
- cbn. exact (toforallpaths _ _ _
242+
- cbn. exact (toforallpaths
243243
(nat_trans_ax (obj_ext_mor_TY _) _) _).
244244
- cbn. apply PullbackArrowUnique.
245245
+ etrans. cbn. apply @pathsinv0, assoc.
@@ -286,9 +286,9 @@ Proof.
286286
use tm_from_qq_eq_reindex.
287287
- cbn.
288288
(* Putting these equalities under [abstract] shaves a couple of seconds off the overall Qed time, but makes the proof script rather less readable. *)
289-
etrans. 2: { exact (toforallpaths _ _ _ (functor_comp (TY _) _ _) _). }
289+
etrans. 2: { exact (toforallpaths (functor_comp (TY _) _ _) _). }
290290
etrans. 2: { cbn. apply maponpaths_2, @pathsinv0, obj_ext_mor_ax. }
291-
exact (toforallpaths _ _ _ (nat_trans_ax (obj_ext_mor_TY F) _) _).
291+
exact (toforallpaths (nat_trans_ax (obj_ext_mor_TY F) _) _).
292292
- etrans. 2: { apply @pathsinv0,
293293
(postCompWithPullbackArrow _ _ _ _ (make_Pullback _ _)). }
294294
apply PullbackArrowUnique.
@@ -364,7 +364,7 @@ Proof.
364364
cbn.
365365
etrans. apply maponpaths, maponpaths, given_TM_to_canonical_te.
366366
etrans. apply maponpaths, (tm_from_qq_mor_te FZ).
367-
etrans. apply (toforallpaths _ _ _
367+
etrans. apply (toforallpaths
368368
(nat_trans_ax (canonical_TM_to_given _ _ (_,,_)) _) _).
369369
cbn. apply maponpaths. apply (canonical_TM_to_given_te _ _ (_,,_)).
370370
Defined.

TypeTheory/ALV2/CwF_SplitTypeCat_Univalent_Cats.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -262,11 +262,11 @@ Proof.
262262
apply funextsec; intros A.
263263
etrans. apply transportf_pshf.
264264
etrans.
265-
refine (toforallpaths _ _ _ _ (te _ _)).
266-
refine (toforallpaths _ _ _ _ _).
265+
refine (toforallpaths _ (te _ _)).
266+
refine (toforallpaths _ _).
267267
apply maponpaths, idtoiso_iso_disp_to_TM_eq.
268268
etrans. apply term_fun_mor_te.
269-
exact (toforallpaths _ _ _ (functor_id (TM _) _) _).
269+
exact (toforallpaths (functor_id (TM _) _) _).
270270
Qed.
271271

272272
Theorem is_univalent_term_fun_structure

0 commit comments

Comments
 (0)