4949 apply funextsec; intros [A [s e]].
5050 unfold canonical_TM_to_given_data; cbn.
5151 etrans. apply maponpaths, (pr2 Y).
52- etrans. apply (toforallpaths _ _ _ (!functor_comp (TM Y) _ _ ) _).
53- etrans. 2: { apply (toforallpaths _ _ _ (functor_comp (TM Y) _ _ ) _). }
52+ etrans. apply (toforallpaths (!functor_comp (TM Y) _ _ ) _).
53+ etrans. 2: { apply (toforallpaths (functor_comp (TM Y) _ _ ) _). }
5454 apply maponpaths_2.
5555 apply (@PullbackArrow_PullbackPr2 C _ _ _ _ _ (make_Pullback _ _)).
5656Qed .
@@ -86,11 +86,11 @@ Proof.
8686 apply nat_trans_eq. apply homset_property.
8787 intros Γ; simpl in Γ. apply funextsec; intros [A [s e]].
8888 cbn. unfold canonical_TM_to_given_data.
89- etrans. apply (toforallpaths _ _ _ (nat_trans_ax (pp Y) s)).
89+ etrans. apply (toforallpaths (nat_trans_ax (pp Y) s)).
9090 etrans. cbn. apply maponpaths, pp_te.
91- etrans. apply (toforallpaths _ _ _ (!functor_comp (TY X) _ _) _).
91+ etrans. apply (toforallpaths (!functor_comp (TY X) _ _) _).
9292 etrans. apply maponpaths_2, e.
93- apply (toforallpaths _ _ _ (functor_id (TY X) _ ) _).
93+ apply (toforallpaths (functor_id (TY X) _ ) _).
9494Qed .
9595
9696(* Functions between sets [f : X <--> Y : g] are inverse iff they are _adjoint_, in that [ f x = y <-> x = f y ] for all x, y.
@@ -104,9 +104,8 @@ Proof.
104104 intros H.
105105 (* This [assert] is to enable the [destruct eA] below. *)
106106 assert (eA : (pp Y : nat_trans _ _) _ t = A). {
107- etrans. apply maponpaths, (!H).
108- use (toforallpaths _ _ _
109- (nat_trans_eq_pointwise pp_canonical_TM_to_given _)).
107+ etrans. { apply maponpaths, (!H). }
108+ use (toforallpaths (nat_trans_eq_pointwise pp_canonical_TM_to_given _)).
110109 }
111110 use total2_paths_f.
112111 exact (!eA).
@@ -175,17 +174,17 @@ Lemma canonical_TM_to_given_te {Γ:C} A
175174Proof .
176175 cbn. unfold canonical_TM_to_given_data. cbn.
177176 etrans. apply maponpaths, (pr2 Y).
178- etrans. use (toforallpaths _ _ _ (!functor_comp (TM Y) _ _ )).
177+ etrans. use (toforallpaths (!functor_comp (TM Y) _ _ )).
179178 etrans. apply maponpaths_2; cbn.
180179 apply (PullbackArrow_PullbackPr2 (make_Pullback _ _)).
181- apply (toforallpaths _ _ _ (functor_id (TM Y) _) _).
180+ apply (toforallpaths (functor_id (TM Y) _) _).
182181Qed .
183182
184183Lemma given_TM_to_canonical_te {Γ:C} A
185184 : (given_TM_to_canonical : nat_trans _ _) (Γ ◂ A) (te Y A) = (te_from_qq Z A).
186185Proof .
187186 etrans.
188- 2: { exact (toforallpaths _ _ _ (canonical_to_given_to_canonical _) _). }
187+ 2: { exact (toforallpaths (canonical_to_given_to_canonical _) _). }
189188 cbn. apply maponpaths, @pathsinv0, canonical_TM_to_given_te.
190189Qed .
191190
@@ -227,10 +226,10 @@ Proof.
227226 etrans. apply transportf_isotoid_pshf.
228227 cbn. unfold canonical_TM_to_given_data. cbn.
229228 etrans. apply maponpaths, YH.
230- etrans. use (toforallpaths _ _ _ (!functor_comp tm _ _ )).
229+ etrans. use (toforallpaths (!functor_comp tm _ _ )).
231230 etrans. apply maponpaths_2; cbn.
232231 apply (PullbackArrow_PullbackPr2 (make_Pullback _ _)).
233- apply (toforallpaths _ _ _ (functor_id tm _) _).
232+ apply (toforallpaths (functor_id tm _) _).
234233Defined .
235234
236235(** * Every compatible q-morphism structure is equal to the canonical one *)
0 commit comments