Skip to content

Commit 0877eb7

Browse files
authored
Merge pull request #157 from arnoudvanderleer/specify-argument-types
Make three instances of `set (ff := fun x => _)` a bit more specific
2 parents e61c803 + 607650d commit 0877eb7

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

Modules/Prelims/deriveadj.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -693,7 +693,7 @@ f' x|f | f
693693
etrans;[ eapply h|].
694694
cbn -[isasetcoprod].
695695
apply maponpaths.
696-
set (ff := fun x => _).
696+
set (ff := fun (x : unit ⨿ X) => _).
697697
set (bp := BinCoproductsHSET).
698698
assert (h' := nat_trans_ax f (bp unitHSET X) _ ff).
699699
apply toforallpaths in h'.
@@ -766,7 +766,7 @@ Proof.
766766
cbn -[isasetcoprod].
767767
apply maponpaths.
768768
apply maponpaths.
769-
set (ff := fun x => _).
769+
set (ff := λ (x : unit ⨿ (X : hSet)), _).
770770
set (bp := BinCoproductsHSET).
771771
apply pathsinv0.
772772
assert (h' := nat_trans_ax v (bp unitHSET X) _ ff).
@@ -811,7 +811,7 @@ Proof.
811811
intros[x y].
812812
apply maponpaths.
813813
unfold pre_subst_nt_data,prodtofuntoprod; cbn -[isasetcoprod].
814-
set (ff := (fun z => _)).
814+
set (ff := fun (z : unit ⨿ (X : hSet)) => _).
815815
set (bp := BinCoproductsHSET).
816816
assert (h := functor_comp B (a := bp unitHSET _) ff (f X)).
817817
set (vv := (v X (u X x))).

0 commit comments

Comments
 (0)