File tree Expand file tree Collapse file tree 1 file changed +3
-3
lines changed
Expand file tree Collapse file tree 1 file changed +3
-3
lines changed Original file line number Diff line number Diff line change @@ -693,7 +693,7 @@ f' x|f | f
693693 etrans;[ eapply h|].
694694 cbn -[isasetcoprod].
695695 apply maponpaths.
696- set (ff := fun x => _).
696+ set (ff := fun (x : unit ⨿ X) => _).
697697 set (bp := BinCoproductsHSET).
698698 assert (h' := nat_trans_ax f (bp unitHSET X) _ ff).
699699 apply toforallpaths in h'.
@@ -766,7 +766,7 @@ Proof.
766766 cbn -[isasetcoprod].
767767 apply maponpaths.
768768 apply maponpaths.
769- set (ff := fun x => _).
769+ set (ff := λ (x : unit ⨿ (X : hSet)), _).
770770 set (bp := BinCoproductsHSET).
771771 apply pathsinv0.
772772 assert (h' := nat_trans_ax v (bp unitHSET X) _ ff).
@@ -811,7 +811,7 @@ Proof.
811811 intros[x y].
812812 apply maponpaths.
813813 unfold pre_subst_nt_data,prodtofuntoprod; cbn -[isasetcoprod].
814- set (ff := ( fun z => _) ).
814+ set (ff := fun (z : unit ⨿ (X : hSet)) => _).
815815 set (bp := BinCoproductsHSET).
816816 assert (h := functor_comp B (a := bp unitHSET _) ff (f X)).
817817 set (vv := (v X (u X x))).
You can’t perform that action at this time.
0 commit comments