22Hom(M x R, N) -> Hom(M, N')
33[deriv_adj]
44
5- The unit of the adjunction is the subtitution operation ([substitution]) M' x R -> M
5+ The unit of the adjunction is the substitution operation ([substitution]) M' x R -> M
66
77 *)
88
@@ -402,23 +402,8 @@ Mais il ne sait pas que (MxR)' = M' x R' en temps que module, bien que
402402 _ ,, commutes_binproduct_derivation_laws M N.
403403
404404
405- (* Maybe we can do it in a smarter way but I don't want to bother (using the eta rule) *)
406-
407- (* These functors are actually equals, but this is life.. *)
408- Definition Terminal_EndC_constant_terminal :
409- (TerminalObject (Terminal_functor_precat C C T) : functor _ _)
410- ⟹ constant_functor C C T .
411- Proof .
412- use make_nat_trans.
413- exact (fun x => identity T).
414- abstract(
415- intros x y f;
416- rewrite id_left, id_right;
417- apply pathsinv0, TerminalArrowUnique).
418- Defined .
419-
420405 (* I have a transfo nat 1 -> 1 + X -> R (1 + X) *)
421- (* This morphism is independant from M *)
406+ (* This morphism is independent from M *)
422407 Local Definition toR' (M : functor _ _) : nat_trans M (∂ (Θ R) : LModule _ _).
423408 Proof .
424409 set (F := (BinCoproduct_of_functors C C bcpC (constant_functor C C T) (functor_identity C))).
@@ -427,8 +412,7 @@ Mais il ne sait pas que (MxR)' = M' x R' en temps que module, bien que
427412 exact (η R).
428413 - eapply compose; [|apply ρ_functors_inv].
429414 eapply compose; [|apply coproduct_nat_trans_in1].
430- eapply compose;[apply (TerminalArrow (Terminal_functor_precat C _ T)) |].
431- apply Terminal_EndC_constant_terminal.
415+ apply (TerminalArrow (Terminal_functor_precat C _ T)).
432416 Defined .
433417
434418 (* Probably there is a smarter way to prove this by reusing
0 commit comments