Skip to content

Commit 93d0e06

Browse files
committed
makes this satellite compile again after merging UniMath PR1739
only small adaptations
1 parent e346a32 commit 93d0e06

File tree

6 files changed

+34
-33
lines changed

6 files changed

+34
-33
lines changed

Modules/Prelims/quotientmonad.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ is so slow when R' is definitely equal to quot_functor !
7070
----
7171
*)
7272

73-
Definition R': functor SET SET := quot_functor (pr1 (pr1 R)) _ congr_equivc.
73+
Definition R': functor SET SET := quot_functor (pr1 R) _ congr_equivc.
7474

7575
Definition projR : (R:functor _ _) ⟹ R' := pr_quot_functor _ _ congr_equivc.
7676

@@ -169,7 +169,7 @@ Proof.
169169
apply univ_surj_nt_ax_pw.
170170
Qed.
171171

172-
Definition R'_Monad_data : Monad_data SET := ((R' ,, R'_μ) ,, R'_η).
172+
Definition R'_Monad_data : disp_Monad_data R' := (R'_μ ,, R'_η).
173173

174174

175175

@@ -339,7 +339,7 @@ Legend of the diagram :
339339
apply assoc_ppprojR.
340340
Qed.
341341

342-
Lemma R'_Monad_laws : Monad_laws R'_Monad_data.
342+
Lemma R'_Monad_laws : disp_Monad_laws R'_Monad_data.
343343
Proof.
344344
repeat split.
345345
- apply R'_Monad_law_η1.
@@ -349,7 +349,7 @@ Qed.
349349

350350
(* Le QED précédent prend énormément de temps.. pourquoi ? *)
351351

352-
Definition R'_monad : Monad _ := _ ,, R'_Monad_laws.
352+
Definition R'_monad : Monad _ := _ ,, _ ,, R'_Monad_laws.
353353

354354
(*
355355
FIN DE LA PREMIERE ETAPE

Modules/Prelims/quotientmonadslice.v

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -63,6 +63,8 @@ Section QuotientMonad.
6363

6464
Context {R : Monad SET}.
6565

66+
Local Definition R0 : functor SET SET := R.
67+
6668
(**
6769
R preserves epimorphisms.
6870
This is needed to prove the the horizontal composition of the
@@ -141,7 +143,7 @@ Let projR := projR congr_equivc.
141143
of actions
142144
*)
143145
Lemma compat_slice (j : J) ( m := ff j)
144-
: ∏ (X : SET) (x y : (pr1 R X : hSet)),
146+
: ∏ (X : SET) (x y : (R0 X : hSet)),
145147
projR X x = projR X y → m X x = m X y.
146148
Proof.
147149
intros X x y eqpr.

Modules/Signatures/EpiSigRepresentability.v

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@ Example EpiSignatureThetaTheta
8888
Proof.
8989
intro hepi.
9090
apply is_nat_trans_epi_from_pointwise_epis.
91-
assert (hf : ∏ x, isEpi (pr1 f x)).
91+
assert (hf : ∏ x, isEpi (pr1 (pr1 f) x)).
9292
{
9393
apply epi_nt_SET_pw.
9494
exact hepi.
@@ -196,7 +196,7 @@ Definition u {S : REP b} (m : R -->[ F] S)
196196
:= u_monad R_epi dd ff (S ,, m) .
197197

198198
(** The induced natural transformation makes a triangle commute *)
199-
Lemma u_def {S : REP b} (m : R -->[ F] S) : ∏ x, ## m x = projR x · u m x.
199+
Lemma u_def {S : REP b} (m : R -->[ F] S) : ∏ x, pr1 (## m) x = projR x · u m x.
200200
Proof.
201201
apply (u_def dd ff (S ,, m)).
202202
Qed.
@@ -223,7 +223,7 @@ Lemma Rep_mor_is_composition
223223
{S : REP b} (m : R -->[ F] S)
224224
: pr1 m = compose (C:=category_Monad _) projR (u m) .
225225
Proof.
226-
use (invmap (Monad_Mor_equiv _ _ _)).
226+
use (invmap (Monad_Mor_equiv _ _)).
227227
apply nat_trans_eq.
228228
- apply (homset_property SET).
229229
- intro X'.
@@ -248,7 +248,7 @@ Qed.
248248

249249
Lemma eq_mr
250250
{S : REP b} (m : R -->[ F] S) (X : SET)
251-
: model_τ R X · ## m X
251+
: model_τ R X · pr1 (## m) X
252252
=
253253
pr1 (# a projR)%ar X · (F (R' ))%ar X
254254
·
@@ -511,7 +511,7 @@ Proof.
511511
apply cancel_postcomposition.
512512
etrans.
513513
apply (cancel_ar_on _ (compose (C:=category_Monad _) projR (u m))).
514-
use (invmap (Monad_Mor_equiv _ _ _)).
514+
use (invmap (Monad_Mor_equiv _ _)).
515515
(* { apply homset_property. } *)
516516
{ apply nat_trans_eq.
517517
apply homset_property.
@@ -571,9 +571,9 @@ Lemma helper
571571
(S : model b)
572572
: ∏ (u' : Rep_b ⟦ rep_of_b_in_R' R R_epi epiab cond_F, S ⟧) x,
573573
projR R R_epi x · (u' : model_mor_mor _ _ _ _ _) x =
574-
pr1 (pr1 (compose (C:=Rep_a) (b:=FF (rep_of_b_in_R' R R_epi epiab cond_F))
574+
pr1 (compose (C:=Rep_a) (b:=FF (rep_of_b_in_R' R R_epi epiab cond_F))
575575
(projR_rep R R_epi epiab cond_F : model_mor_mor _ _ _ _ _)
576-
(# FF u'))) x.
576+
(# FF u')) x.
577577
Proof.
578578
intros u' x.
579579
apply pathsinv0.

Modules/Signatures/ModelCat.v

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ Lemma isaset_rep_fiber_mor {a : SIG} (M N : model a) :
7373
Proof.
7474
intros.
7575
apply isaset_total2 .
76-
- apply has_homsets_Monad.
76+
- apply isaset_Monad_Mor.
7777
- intros.
7878
apply isasetaprop.
7979
apply isaprop_rep_fiber_mor_law.
@@ -99,14 +99,14 @@ Proof.
9999
use (invmap (subtypeInjectivity _ _ _ _ )).
100100
- intro g.
101101
apply isaprop_rep_fiber_mor_law.
102-
- use (invmap (Monad_Mor_equiv _ _ _ )).
102+
- use (invmap (Monad_Mor_equiv _ _)).
103103
+ assumption.
104104
Qed.
105105

106106
(** If two 1-model morphisms are pointwise equal, then they are equal *)
107107
Lemma rep_fiber_mor_eq {a : SIG} (R S:model a)
108108
(u v: rep_fiber_mor R S) :
109-
(∏ c, pr1 (pr1 u) c = pr1 (pr1 v) c) -> u = v.
109+
(∏ c, pr1 u c = pr1 v c) -> u = v.
110110
Proof.
111111
intros.
112112
apply rep_fiber_mor_eq_nt.
@@ -407,8 +407,8 @@ M (M + Id) ---------> M R --------> M
407407
Defined.
408408

409409
(** Data for the (M + Id) monad *)
410-
Definition mod_id_monad_data : Monad_data C :=
411-
((IdM ,, mod_id_μ) ,, mod_id_η).
410+
Definition mod_id_monad_data : disp_Monad_data IdM :=
411+
(mod_id_μ ,, mod_id_η).
412412

413413
Local Infix "++f" := (BinCoproductOfArrows _ _ _) (at level 6).
414414
Local Notation "[[ f , g ]]" := (BinCoproductArrow _ f g).
@@ -506,7 +506,7 @@ M (M + Id) ---------> M R --------> M
506506

507507

508508
(** Monad laws for (M + Id) *)
509-
Lemma mod_id_monad_laws : Monad_laws mod_id_monad_data.
509+
Lemma mod_id_monad_laws : disp_Monad_laws mod_id_monad_data.
510510
Proof.
511511
repeat split.
512512
- intro c.
@@ -584,7 +584,7 @@ M (M + Id) ---------> M R --------> M
584584

585585

586586
(** The M + Id monad *)
587-
Definition mod_id_monad : Monad C := _ ,, mod_id_monad_laws.
587+
Definition mod_id_monad : Monad C := _ ,, _ ,, mod_id_monad_laws.
588588

589589
(** The morphism M + Id --> R is a monad morphism *)
590590
Lemma mod_id_monad_mor_laws : Monad_Mor_laws (T := mod_id_monad) mod_id_nt.

Modules/Signatures/Signature.v

Lines changed: 12 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -385,7 +385,7 @@ Lemma isaset_model_mor_mor (a b : SIGNATURE) (M : model a) (N : model b) f :
385385
Proof.
386386
intros.
387387
apply isaset_total2 .
388-
- apply has_homsets_Monad.
388+
- apply isaset_Monad_Mor.
389389
- intros.
390390
apply isasetaprop.
391391
apply isaprop_model_mor_law.
@@ -404,7 +404,7 @@ Definition rep_disp_ob_mor : disp_cat_ob_mor PRECAT_SIGNATURE :=
404404
(model,, model_mor_mor).
405405

406406
Lemma rep_id_law (a : SIGNATURE) (RM : rep_disp_ob_mor a) :
407-
model_mor_law RM RM (identity (C:=PRECAT_SIGNATURE) _) (Monad_identity _).
407+
model_mor_law RM RM (identity (C:=PRECAT_SIGNATURE) _) (identity _).
408408
Proof.
409409
intro c.
410410
apply pathsinv0.
@@ -421,7 +421,7 @@ Definition rep_id (a : SIGNATURE) (RM : rep_disp_ob_mor a) :
421421
RM -->[ identity (C:=PRECAT_SIGNATURE) a] RM.
422422
Proof.
423423
intros.
424-
exists (Monad_identity _).
424+
exists (identity _).
425425
apply rep_id_law.
426426
Defined.
427427

@@ -432,8 +432,7 @@ Lemma transport_signature_mor (x y : SIGNATURE) (f g : signature_Mor x y)
432432
(xx : rep_disp_ob_mor x)
433433
(yy : rep_disp_ob_mor y)
434434
(ff : xx -->[ f] yy)
435-
(c : C) :
436-
pr1 (pr1 (transportf (mor_disp xx yy) e ff)) c = pr1 (pr1 ff) c.
435+
(c : C) : pr1 (transportf (mor_disp xx yy) e ff) c = pr1 ff c.
437436
Proof.
438437
induction e.
439438
apply idpath.
@@ -446,13 +445,13 @@ Qed.
446445
Lemma model_mor_mor_equiv (a b : SIGNATURE) (R:rep_disp_ob_mor a)
447446
(S:rep_disp_ob_mor b) (f:signature_Mor a b)
448447
(u v: R -->[ f] S) :
449-
(∏ c, pr1 (pr1 u) c = pr1 (pr1 v) c) -> u = v.
448+
(∏ c, pr1 u c = pr1 v c) -> u = v.
450449
Proof.
451450
intros.
452451
use (invmap (subtypeInjectivity _ _ _ _ )).
453452
- intro g.
454453
apply isaprop_model_mor_law.
455-
- use (invmap (Monad_Mor_equiv _ _ _ )).
454+
- use (invmap (Monad_Mor_equiv _ _)).
456455
+ apply nat_trans_eq.
457456
apply homset_property.
458457
assumption.
@@ -544,12 +543,12 @@ Proof.
544543
- set (heqf:= assoc f g h).
545544
apply model_mor_mor_equiv.
546545
intros c.
547-
etrans. Focus 2.
548-
symmetry.
549-
apply transport_signature_mor.
550-
cbn.
551-
rewrite assoc.
552-
apply idpath.
546+
etrans.
547+
2: { symmetry.
548+
apply transport_signature_mor. }
549+
cbn.
550+
rewrite assoc.
551+
apply idpath.
553552
- apply isaset_model_mor_mor.
554553
Qed.
555554

Modules/SoftEquations/CatOfTwoSignatures.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -380,7 +380,7 @@ Lemma transport_signature_mor (x y : TwoSignature) (f g : x →→ y)
380380
(yy : two_model_disp_ob_mor y)
381381
(ff : xx -->[ f] yy)
382382
(c : C) :
383-
pr1 (pr1 (transportf (mor_disp xx yy) e ff)) c = pr1 (pr1 ff) c.
383+
pr1 (transportf (mor_disp xx yy) e ff) c = pr1 ff c.
384384
Proof.
385385
induction e.
386386
apply idpath.

0 commit comments

Comments
 (0)