Skip to content

Commit 8eac326

Browse files
Added links to YouTube videos
1 parent e515343 commit 8eac326

File tree

1 file changed

+63
-7
lines changed

1 file changed

+63
-7
lines changed

README.md

Lines changed: 63 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Applied Robust Statistics through the Monitoring Approach: Applications in Regression
22
GitHub repo of the forthcoming book "Applied Robust Statistics through the Monitoring Approach:
33
Applications in Regression" Heidelberg: Springer Nature. by
4-
Atkinson,A.C., Riani,M., Corbellini,A., Perrotta D., and Todorov,V. (2024),
4+
Atkinson,A.C., Riani,M., Corbellini,A., Perrotta D., and Todorov,V. (2025),
55

66

77
**Reproducible Research (run in MATLAB on line or see Jupyter notebook file with attached output)**
@@ -24,19 +24,75 @@ A YouTube video summarizing the contents of the book can be found at the link be
2424
Additional YouTube videos can be found inside the individual chapters.
2525

2626

27-
1. Introduction and the Grand Plan [[open dir](cap1/README.md)]
28-
2. Introduction to M-Estimation for Univariate Samples[[open dir](cap2/README.md)]
29-
3. Robust Estimators in Multiple Regression [[open dir](cap3/README.md)]
30-
4. The Monitoring Approach in Multiple Regression [[open dir](cap4/README.md)]
27+
1. **Introduction and the Grand Plan** [[open dir](cap1/README.md)]
28+
>>> <a href="https://youtu.be/jSLNEa5VTN4?si=bPYYXl1pqrdHu2Jt"> Introduction and the Grand Plan <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
29+
<br>
30+
31+
2. **Introduction to M-Estimation for Univariate Samples**[[open dir](cap2/README.md)]
32+
>>> <a href="https://youtu.be/4wP0rbELIjE?si=XETW6XZM5HlIPu4o"> Introduction to M-Estimation for Univariate Samples PART I <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
33+
34+
>>> <a href="https://youtu.be/g_mvTRs4LjY?si=4s4folepyrN5nJ1v"> Introduction to M-Estimation for Univariate Samples PART II <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
35+
<br>
36+
37+
3. **Robust Estimators in Multiple Regression** [[open dir](cap3/README.md)]
38+
>>> <a href="https://youtu.be/X_P8bQABQrw?si=kLWM016_IBek1HTK"> Analysis of the AR regression data <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
39+
40+
41+
4. **The Monitoring Approach in Multiple Regression** [[open dir](cap4/README.md)]
42+
43+
>>> <a href="https://youtu.be/MMPVy7G41T8?si=nsHGPxpgcuD0twW5"> Outlier detection with the forward search (Sections 4.1-4.5 and 4.9.5) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
44+
45+
>>> <a href="analysis of the Hawkins data (Section 4.9.4)"> Analysis of the Hawkins data (Section 4.9.4) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
46+
47+
>>> <a href="https://youtu.be/z-cCFCYiwpU?si=vPw50MDypy52keSW"> Analysis of the bank data (Section 4.10) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
48+
49+
3150
5. Practical Comparison of the Different Estimators [[open dir](cap5/README.md)]
51+
3252
6. Transformations [[open dir](cap6/README.md)]
33-
7. Non-parametric Regression [[open dir](cap7/README.md)]
53+
>>> <a href="https://youtu.be/KOPYSeNgKPM?si=Ealxz6k738mmp0Oy"> Transformation of the response <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
54+
55+
56+
7. Non-parametric Regression [[open dir](cap7/README.md)]
57+
58+
>>> <a href="https://youtu.be/Q7D3HioOxHQ?si=iC5gNyOYEvtOlkbp"> Non parametric transformations (part I) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
59+
60+
>>> <a href="https://youtu.be/bvOWwGmxRko?si=m0FtPkrlU4ctTizY"> Non parametric transformations (part II) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
61+
62+
63+
3464
8. Extensions of the Multiple Regression Model [[open dir](cap8/README.md)]
65+
>>> <a href="https://youtu.be/Op_yXrdhiDg?si=RVkitOUWg5EAGRuu"> Robust Bayesian regression (Sections 8.1- 8.3) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
66+
67+
>>> <a href="https://youtu.be/QLnSTc5g19A?si=tP0L3BwOLrvUypxX"> Heteroskedastic regression (Section 8.4) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
68+
69+
70+
3571
9. Model selection [[open dir](cap9/README.md)]
72+
73+
>>> <a href="https://youtu.be/xFNGnEgDam4?si=l5WOOcGj6L4Hy9u-"> Variable Selection Mallow's Cp and the generalized candlestick plot (Section 9.3) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
74+
75+
3676
10. Some Robust Data Analyses [[open dir](cap10/README.md)]
3777

78+
>>> <a href="https://youtu.be/wj3k2-Ca-f4?si=eX5OyqddUGxTpkdP"> Income data 1: regression analysis (Section 10.2) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
79+
80+
>>> <a href="https://youtu.be/6EF3Nk1yzTE?si=e3Trx-w9RZ4dN9X5"> Income data 2: regression analysis (Section 10.3) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
81+
82+
>>> <a href="https://youtu.be/0mVbMqh99_4?si=EC8tpKd4cpWEfE9i"> Analysis of the customer loyalty data (Section 10.4) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
83+
84+
>>> <a href="https://youtu.be/YT8exrmVpdg?si=VaVjkWBNSIK0EaNN"> Analysis of the modified customer loyalty data (Section 10.5) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
85+
86+
>>> <a href="https://youtu.be/1RF3wj1Ml8Y?si=0WEMm-4qD4eNSscH"> Analysis of the NCI60 Cancer Cell Panel Data (Part II, Section 10.6) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
87+
88+
89+
3890
Appendix. Solution to the Exercises [[open dir](solutionsEX/README.md)]
3991

92+
>>> <a href="https://youtu.be/2TFwB-Rf3G8?si=iRNL0MurPz5leB_Z"> Analysis of the heart rate data (Exercise 10.1) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
93+
94+
>>> <a href="https://youtu.be/pYdO688nvOk?si=LwAu9BKInyHxgcKQ"> Analysis of the auto mpg data (Exercise 10.4) <img src="https://upload.wikimedia.org/wikipedia/commons/b/b8/YouTube_Logo_2017.svg" alt="YouTube Logo" width="100"></a>
95+
4096
# Code by dataset
4197
In the book there are datasets which are used in different Chapters.
4298
Here you can find the link to the folder which contains the
@@ -61,7 +117,7 @@ $$
61117
isbn = {XXX-XXXXXX},
62118
publisher = {Heidelberg: Springer Nature},
63119
title = {Applied Robust Statistics through the Monitoring Approach, Applications in Regression},
64-
year = {2024}
120+
year = {2025}
65121
}
66122

67123

0 commit comments

Comments
 (0)