|
| 1 | + |
| 2 | + |
| 3 | +%% MR: (Multiple regression data): yXplot |
| 4 | +close all; |
| 5 | +load('multiple_regression.txt'); |
| 6 | +y=multiple_regression(:,4); |
| 7 | +X=multiple_regression(:,1:3); |
| 8 | +yXplot(y,X); |
| 9 | + |
| 10 | +%% MR: (Multiple regression data): traditional fit |
| 11 | +close all; |
| 12 | +load('multiple_regression.txt'); |
| 13 | +y=multiple_regression(:,4); |
| 14 | +X=multiple_regression(:,1:3); |
| 15 | +out=fitlm(X,y); |
| 16 | +disp(out) |
| 17 | + |
| 18 | +%% MR: (Multiple regression data): traditional robust fit |
| 19 | +close all; |
| 20 | +load('multiple_regression.txt'); |
| 21 | +y=multiple_regression(:,4); |
| 22 | +X=multiple_regression(:,1:3); |
| 23 | +out=fitlm(X,y,'RobustOpts','on'); |
| 24 | +disp(out) |
| 25 | + |
| 26 | +%% MR: (Multiple regression data): qqplot with envelopes |
| 27 | +load('multiple_regression.txt'); |
| 28 | +y=multiple_regression(:,4); |
| 29 | +X=multiple_regression(:,1:3); |
| 30 | +outLM=fitlm(X,y,'exclude',''); |
| 31 | +res=outLM.Residuals{:,3}; |
| 32 | +qqplotFS(res,'X',X,'plots',1); |
| 33 | +title('qqplot of stud. res.') |
| 34 | + text(-2.4,-2.4,num2str(43),'Units','data'); |
| 35 | + |
| 36 | +%% Plot of residuals against fitted values |
| 37 | +close all |
| 38 | +plot(outLM.Fitted,res,'o') |
| 39 | +sel=43; |
| 40 | +text(outLM.Fitted(sel)+0.5,res(sel),num2str(sel)) |
| 41 | +xlabel('Fitted values') |
| 42 | +ylabel('Residuals') |
| 43 | + |
| 44 | +%% MR: (Multiple regression data): S estimators with 2 values of breakdown point |
| 45 | +conflev=[0.95 0.99]; |
| 46 | +% Note that the pattern of residuals changes completely |
| 47 | +% Using bdp=0.5 the outliers are correctly found, on the other hand using |
| 48 | +% bdp=0.25 the masking effect is clear |
| 49 | +figure; |
| 50 | +h1=subplot(2,1,1); |
| 51 | +bdp=0.25; |
| 52 | +[out]=Sreg(y,X,'nsamp',3000,'bdp',bdp); |
| 53 | +resindexplot(out,'h',h1,'conflev',conflev); |
| 54 | +ylabel(['Breakdown point =' num2str(bdp)]) |
| 55 | +h2=subplot(2,1,2); |
| 56 | +bdp=0.5; |
| 57 | +[out]=Sreg(y,X,'nsamp',3000,'bdp',bdp); |
| 58 | +resindexplot(out,'h',h2,'conflev',conflev); |
| 59 | +ylabel(['Breakdown point =' num2str(bdp)]) |
| 60 | +cascade; |
| 61 | + |
| 62 | + |
| 63 | +%% Brushing from the resindexplot |
| 64 | +close all |
| 65 | +bdp=0.5; |
| 66 | +% two differentconfidence levels |
| 67 | +conflev=[0.95 0.99]; |
| 68 | + |
| 69 | +load('multiple_regression.txt'); |
| 70 | +y=multiple_regression(:,4); |
| 71 | +X=multiple_regression(:,1:3); |
| 72 | + |
| 73 | +[out]=Sreg(y,X,'nsamp',3000,'bdp',bdp,'yxsave',1); |
| 74 | +resindexplot(out,'conflev',conflev,'databrush',1); |
| 75 | +% ylabel(['Breakdown point =' num2str(bdp)]) |
| 76 | + |
| 77 | + |
| 78 | +%% Back to slides monitoring of S estimators |
| 79 | + |
| 80 | +%% Resfwdplot shown as a movie |
| 81 | +load('multiple_regression.txt'); |
| 82 | +y=multiple_regression(:,4); |
| 83 | +X=multiple_regression(:,1:3); |
| 84 | +% LMS using 1000 subsamples |
| 85 | +[out]=LXS(y,X,'nsamp',10000); |
| 86 | +% Forward Search |
| 87 | +[out]=FSReda(y,X,out.bs); |
| 88 | +resfwdplot(out,'movieLength',5) |
| 89 | + |
| 90 | +%% MR (Multiple regression data): Forward EDA datatooltip which monitors bsb |
| 91 | +load('multiple_regression.txt'); |
| 92 | +y=multiple_regression(:,4); |
| 93 | +X=multiple_regression(:,1:3); |
| 94 | +% LMS using 1000 subsamples |
| 95 | +[out]=LXS(y,X,'nsamp',10000); |
| 96 | +% Forward Search |
| 97 | +[out]=FSReda(y,X,out.bs); |
| 98 | +out1=out; |
| 99 | +% Create scaled squared residuals |
| 100 | +% out1.RES=out.RES.^2; |
| 101 | + |
| 102 | +datatooltip=struct; |
| 103 | +datatooltip.SubsetLinesColor=[1 0 0]; |
| 104 | +resfwdplot(out1,'datatooltip',datatooltip) |
| 105 | + |
| 106 | + |
| 107 | +%% MR (Multiple regression data): Forward EDA using persistent brushing |
| 108 | +load('multiple_regression.txt'); |
| 109 | +y=multiple_regression(:,4); |
| 110 | +X=multiple_regression(:,1:3); |
| 111 | +% LMS using 1000 subsamples |
| 112 | +[out]=LXS(y,X,'nsamp',10000); |
| 113 | +% Forward Search |
| 114 | +[out]=FSReda(y,X,out.bs); |
| 115 | +out1=out; |
| 116 | +% Create scaled squared residuals |
| 117 | +out1.RES=out.RES.^2; |
| 118 | + |
| 119 | +% plot minimum deletion residual with personalized options |
| 120 | +% mdrplot(out,'ylimy',[1 4.2],'xlimx',[10 60],'FontSize',14,'SizeAxesNum',14,'lwdenv',2); |
| 121 | + |
| 122 | +% Persistent brushing on the plot of the scaled residuals. The plot is: |
| 123 | +fground.flabstep=''; % without labels at steps 0 and n |
| 124 | +fground.fthresh=3.5^2; % threshold which defines the trajectories in foreground |
| 125 | +fground.LineWidth=1.5; % personalised linewidth for trajectories in foreground |
| 126 | +fground.Color={'r'}; % personalised color (red lines) for trajectories in foreground |
| 127 | + |
| 128 | +databrush=struct; |
| 129 | +databrush.bivarfit=''; |
| 130 | +databrush.selectionmode='Rect'; % Rectangular selection |
| 131 | +databrush.persist='on'; % Enable repeated mouse selections |
| 132 | +databrush.Label='on'; % Write labels of trajectories while selecting |
| 133 | +databrush.RemoveLabels='off'; % Do not remove labels after selection |
| 134 | +databrush.Pointer='hand'; % Hand cursor point while selecting |
| 135 | +databrush.FlagSize='8'; % Size of the brushed points |
| 136 | +databrush.RemoveTool='on'; % Remove yellow selection after finishing brushing |
| 137 | +resfwdplot(out1,'fground',fground,'databrush',databrush); |
| 138 | + |
| 139 | +%% Rotate manually |
| 140 | +scatter3(X(:,1),X(:,2),y) |
| 141 | +xlabel('X1') |
| 142 | +ylabel('X2') |
| 143 | +zlabel('y') |
| 144 | +hold('on'); |
| 145 | +sel=[9 30 31 38 47 21]; |
| 146 | +scatter3(X(sel,1),X(sel,2),y(sel),'r') |
| 147 | +% sel=[43]; |
| 148 | +hold('on') |
| 149 | +sel1=43; |
| 150 | +scatter3(X(sel1,1),X(sel1,2),y(sel1),'k','MarkerFaceColor','k') |
| 151 | +text(X(sel1,1),X(sel1,2),y(sel1),'43') |
| 152 | + |
| 153 | + |
| 154 | +%% MR: Forward EDA persistent brushing with lasso selection. |
| 155 | +close all; |
| 156 | +load('multiple_regression.txt'); |
| 157 | +y=multiple_regression(:,4); |
| 158 | +X=multiple_regression(:,1:3); |
| 159 | +% LMS using 1000 subsamples |
| 160 | +[out]=LXS(y,X,'nsamp',10000); |
| 161 | +% Forward Search |
| 162 | +[out]=FSReda(y,X,out.bs); |
| 163 | +out1=out; |
| 164 | +% Create scaled squared residuals |
| 165 | +out1.RES=out.RES.^2; |
| 166 | + |
| 167 | +fground.flabstep=[15 20]; |
| 168 | +databrush=struct; |
| 169 | +databrush.bivarfit=''; |
| 170 | +databrush.selectionmode='Lasso'; % Lasso selection |
| 171 | +databrush.persist='on'; % Enable repeated mouse selections |
| 172 | +databrush.Label='on'; % Write labels of trajectories while selecting |
| 173 | +databrush.RemoveLabels='off'; % Do not remove labels after selection |
| 174 | +resfwdplot(out1,'fground',fground,'databrush',databrush); |
| 175 | + |
| 176 | +%% MR: Traditional Variable selection (all units) |
| 177 | +close all; |
| 178 | +load('multiple_regression.txt'); |
| 179 | +y=multiple_regression(:,4); |
| 180 | +X=multiple_regression(:,1:3); |
| 181 | +out=fitlm(X,y) |
| 182 | + |
| 183 | +%% Traditional Variable selection (all units) without unit 43 |
| 184 | +fitlm(X,y,'Exclude',43) |
| 185 | + |
| 186 | +%% MR: Forward EDA rescaled t stat monitoring |
| 187 | +close all; |
| 188 | +load('multiple_regression.txt'); |
| 189 | +y=multiple_regression(:,4); |
| 190 | +X=multiple_regression(:,1:3); |
| 191 | +% LMS using 10000 subsamples |
| 192 | +[out]=LXS(y,X,'nsamp',10000); |
| 193 | +% Forward Search |
| 194 | +[out]=FSReda(y,X,out.bs); |
| 195 | +hold('on'); |
| 196 | +plot(out.Tols(:,1),out.Tols(:,3:end),'LineWidth',3) |
| 197 | +for j=3:5 |
| 198 | + tj=['t_' num2str(j-2)]; |
| 199 | + text(out.Tols(1,1)-1.2,out.Tols(1,j),tj,'FontSize',16) |
| 200 | + |
| 201 | +end |
| 202 | + |
| 203 | +quant=norminv(0.95); |
| 204 | +v=axis; |
| 205 | +lwdenv=2; |
| 206 | +line([v(1),v(2)],[quant,quant],'color','g','LineWidth',lwdenv); |
| 207 | +line([v(1),v(2)],[-quant,-quant],'color','g','LineWidth',lwdenv); |
| 208 | +% plot(out.Tols(end-6:end-1,1),out.Tols(end-6:end-1,3),'LineWidth',4,'color','r') |
| 209 | +title('Monitoring of t-stat','FontSize',14); |
| 210 | +xlabel('Subset size m'); |
| 211 | + |
| 212 | + |
| 213 | +%% MR: monitoring of t-stat with zoom for first variable |
| 214 | +figure; |
| 215 | +hold('on'); |
| 216 | +plot(out.Tols(:,1),out.Tols(:,3:end)) |
| 217 | +ylim([-3 5]); |
| 218 | +quant=norminv(0.95); |
| 219 | +v=axis; |
| 220 | +lwdenv=2; |
| 221 | +line([v(1),v(2)],[quant,quant],'color','g','LineWidth',lwdenv); |
| 222 | +line([v(1),v(2)],[-quant,-quant],'color','g','LineWidth',lwdenv); |
| 223 | +plot(out.Tols(end-6:end-1,1),out.Tols(end-6:end-1,3),'LineWidth',4,'color','r') |
| 224 | +title('Monitoring of t-stat for first variable'); |
| 225 | +xlabel('Subset size m'); |
| 226 | +plot(out.Tols(end-7:end-6,1),out.Tols(end-7:end-6,3),'LineWidth',4,'color','b') |
| 227 | +plot(out.Tols(end-1:end,1),out.Tols(end-1:end,3),'LineWidth',4,'color','b') |
| 228 | +text(out.Tols(end-7,1),out.Tols(end-7,3)+0.7,'43','FontSize',16); |
| 229 | +text(out.Tols(end-1,1),out.Tols(end-1,3)+0.7,'43','FontSize',16); |
| 230 | +%annotation(gcf,'textarrow',[0.54 0.68],... |
| 231 | +% [0.28 0.44],'TextEdgeColor','none'); |
| 232 | +text(53,1,'9, 21, 30, 31, 38, 47','FontSize',16,'Rotation',-45); |
| 233 | + |
| 234 | +%% Succesful applications: see slides |
| 235 | + |
| 236 | +%% Bank data see slides |
| 237 | + |
| 238 | +%% Introduction to transformations |
| 239 | + |
| 240 | +%% WD: Score test traditional analysis |
| 241 | +% Log transformation is strongly suggested |
| 242 | +clearvars;close all; |
| 243 | +load('wool.txt','wool'); |
| 244 | +y=wool(:,4); |
| 245 | +X=wool(:,1:3); |
| 246 | +out=Score(y,X); |
| 247 | +lam="lambda="+(-1:0.5:1)'; |
| 248 | +disp(array2table(out.Score,'RowNames',lam,"VariableNames","Score test")); |
| 249 | + |
| 250 | +%% WD: fan plot |
| 251 | +% Log transformation is strongly suggested |
| 252 | +clearvars;close all; |
| 253 | +load('wool.txt','wool'); |
| 254 | +y=wool(:,4); |
| 255 | +X=wool(:,1:3); |
| 256 | +[outfan]=FSRfan(y,X,'plots',1,'init',7); |
| 257 | + |
| 258 | + |
| 259 | +%% LD (Loyalty cards data): yXplot |
| 260 | +clearvars;close all; |
| 261 | +load('loyalty.txt'); |
| 262 | +y=loyalty(:,4); %#ok<SUSENS> |
| 263 | +X=loyalty(:,1:3); |
| 264 | +namey='Sales'; |
| 265 | +nameX={'Number of visits', 'Age', 'Number of persons in the family'}; |
| 266 | +% yXplot |
| 267 | +yXplot(y,X,'nameX',nameX,'namey',namey); |
| 268 | + |
| 269 | +%% LD fan plot |
| 270 | +clearvars;close all; |
| 271 | +load('loyalty.txt'); |
| 272 | +y=loyalty(:,4); %#ok<SUSENS> |
| 273 | +X=loyalty(:,1:3); |
| 274 | +% Compute fan plot to find best value of transformation parameter |
| 275 | +[out]=FSRfan(y,X,'plots',1,'la',[-1 -0.5 0 1/4 1/3 0.4 0.5 1]); |
| 276 | + |
| 277 | + |
| 278 | +%% LD: dynamic brushing from the fan plot with dynamic brushing |
| 279 | +% Interactive_example |
| 280 | +clearvars;close all; |
| 281 | +load('loyalty.txt'); |
| 282 | +y=loyalty(:,4); |
| 283 | +X=loyalty(:,1:3); |
| 284 | +namey='Sales'; |
| 285 | +nameX={'Number of visits', 'Age', 'Number of persons in the family'}; |
| 286 | + |
| 287 | +% Compute fan plot to find best value of transformation parameter |
| 288 | +[out]=FSRfan(y,X,'plots',1,'la',[-1 -0.5 0 1/4 1/3 0.4 0.5 1]); |
| 289 | +%FlagSize controls how large must be the highlighted points. It is a |
| 290 | +%parameter of selectdataFS. |
| 291 | +fanplot(out,'xlimx',[10 520],'lwd',1.5,'FontSize',11,'SizeAxesNum',11,'nameX',nameX,'namey',namey,'databrush',{'selectionmode' 'Brush'... |
| 292 | + 'multivarfit' '2' 'FlagSize' '5'}) |
| 293 | +% If you wish to do persistent brushing from the fan plot |
| 294 | +% uncomment the following line. Notice that multiple trajectories can be selected |
| 295 | +% fanplot(out,'databrush',{'selectionmode' 'Rect' 'persist' 'on' 'selectionmode','Brush'}) |
| 296 | + |
| 297 | + |
| 298 | + |
| 299 | +%% LD: Automatic outlier detection procedure on transformed data |
| 300 | +clearvars;close all; |
| 301 | +load('loyalty.txt'); |
| 302 | +y=loyalty(:,4); |
| 303 | +X=loyalty(:,1:3); |
| 304 | +y1=y.^(0.4); |
| 305 | +nameX={'Number of visits', 'Age', 'Number of persons in the family'}; |
| 306 | + |
| 307 | +namey1='Sales^{0.4}'; |
| 308 | +[outFS]=FSR(y1,X,'namey',namey1,'nameX',nameX); |
| 309 | + |
| 310 | + |
| 311 | +%% LD: Automatic transformation |
| 312 | +close all |
| 313 | +load('loyalty.txt'); |
| 314 | +y=loyalty(:,4); %#ok<SUSENS> |
| 315 | +X=loyalty(:,1:3); |
| 316 | +n=length(y); |
| 317 | +[outFSRfan]=FSRfan(y,X,'plots',1,'init',round(n*0.3),'nsamp',10000,'la',[-1:0.1:1],'msg',0); |
| 318 | +[out]=fanBIC(outFSRfan); |
| 319 | + |
| 320 | + |
| 321 | + |
| 322 | +%% LD: Interactive monitoring of the trajectories of scaled residuals |
| 323 | +% Interactive_example |
| 324 | +% using persistent brushing |
| 325 | +clearvars;close all; |
| 326 | +load('loyalty.txt'); |
| 327 | +y=loyalty(:,4); |
| 328 | +X=loyalty(:,1:3); |
| 329 | + |
| 330 | +y1=y.^(0.4); |
| 331 | +[out]=LXS(y1,X,'nsamp',10000); |
| 332 | +[out]=FSReda(y1,X,out.bs); |
| 333 | + |
| 334 | +databrush=struct; |
| 335 | +databrush.bivarfit='2'; |
| 336 | +databrush.selectionmode='Rect'; % Brush selection |
| 337 | +databrush.persist='on'; % Enable repeated mouse selections |
| 338 | +databrush.Label='off'; % Write labels of trajectories while selecting |
| 339 | +databrush.RemoveLabels='on'; % Do not remove labels after selection |
| 340 | +resfwdplot(out,'databrush',databrush); |
| 341 | + |
| 342 | +%% Examples of Extended Yeo Johnson transformation: back to slides |
| 343 | + |
| 344 | +%% Examples of fraud detection: back to slides |
| 345 | + |
| 346 | + |
| 347 | +%% FP (Fishery product): preliminary analysis |
| 348 | +clearvars;close all; |
| 349 | +load('fishery.mat'); |
| 350 | +y=fishery{:,2}; |
| 351 | +X=fishery{:,1}; |
| 352 | +% Plot of the original data |
| 353 | +plot(X,y,'*'); |
| 354 | +xlabel('Quantity (Tons)'); |
| 355 | +ylabel('Values (Thousands of Euros)'); |
| 356 | + |
| 357 | +%% FP: Dynamic brushing from the fan plot without persistent option |
| 358 | +% Interactive_example |
| 359 | +clearvars;close all; |
| 360 | +% Multiple trajectories can be selected |
| 361 | +load('fishery.mat'); |
| 362 | +y=fishery{:,2}; |
| 363 | +X=fishery{:,1}; |
| 364 | + |
| 365 | +[out]=FSRfan(y,X,'plots',1,'la',[0 0.5 1]); |
| 366 | +fanplot(out,'ylimy',[-40,20],'databrush',{'selectionmode' 'Rect' 'persist' '' 'selectionmode','Brush'},'conflev',1-0.001/length(y)) |
| 367 | + |
| 368 | + |
| 369 | + |
| 370 | + |
0 commit comments