|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# <a id='toc1_'></a>[Resource Hoarding Analysis](#toc0_)\n", |
| 9 | + "This notebook demonstrates the use of `ResourceHoarding` class in `src/analysis/hoarding.py` for analyzing the jobs and users that hoard resources by requesting a disproportionate amount of CPU Memory and Cores." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "id": "1", |
| 15 | + "metadata": {}, |
| 16 | + "source": [ |
| 17 | + "**Table of contents**<a id='toc0_'></a> \n", |
| 18 | + "- [Resource Hoarding Analysis](#toc1_) \n", |
| 19 | + " - [Setup](#toc1_1_) \n", |
| 20 | + " - [Filter jobs for resource hoarding analysis](#toc1_1_1_) \n", |
| 21 | + " - [Analyze Jobs Hoarding Resources:](#toc1_2_) \n", |
| 22 | + " - [Generate all hoarding analysis metrics for jobs:](#toc1_2_1_1_) \n", |
| 23 | + " - [Find most inefficient jobs hoarding node RAM based on `ram_hoarding_fraction_diff`](#toc1_2_1_2_) \n", |
| 24 | + " - [Find most inefficient jobs hoarding CPU cores based on `core_hoarding_fraction_diff`](#toc1_2_1_3_) \n", |
| 25 | + " - [Analyze Users Hoarding Resources:](#toc1_3_) \n", |
| 26 | + " - [Generate all hoarding analysis metrics for users:](#toc1_3_1_1_) \n", |
| 27 | + " - [Find most inefficient users hoarding node RAM based on `expected_value_ram_hoarding_fraction_diff`](#toc1_3_1_2_) \n", |
| 28 | + " - [Find most inefficient users hoarding CPU cores based on `expected_value_core_hoarding_fraction_diff`](#toc1_3_1_3_) \n", |
| 29 | + "\n", |
| 30 | + "<!-- vscode-jupyter-toc-config\n", |
| 31 | + "\tnumbering=false\n", |
| 32 | + "\tanchor=true\n", |
| 33 | + "\tflat=false\n", |
| 34 | + "\tminLevel=1\n", |
| 35 | + "\tmaxLevel=6\n", |
| 36 | + "\t/vscode-jupyter-toc-config -->\n", |
| 37 | + "<!-- THIS CELL WILL BE REPLACED ON TOC UPDATE. DO NOT WRITE YOUR TEXT IN THIS CELL -->" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "id": "2", |
| 43 | + "metadata": {}, |
| 44 | + "source": [ |
| 45 | + "## <a id='toc1_1_'></a>[Setup](#toc0_)" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "id": "3", |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "# Import required modules\n", |
| 56 | + "import sys\n", |
| 57 | + "from pathlib import Path\n", |
| 58 | + "import pandas as pd\n", |
| 59 | + "\n", |
| 60 | + "# import matplotlib.pyplot as plt\n", |
| 61 | + "# import seaborn as sns\n", |
| 62 | + "import os" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "id": "4", |
| 68 | + "metadata": {}, |
| 69 | + "source": [ |
| 70 | + "Jupyter server should be run at the notebook directory, so the output of the following cell would be the project root:" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "id": "5", |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "project_root = str(Path.cwd().resolve().parent)\n", |
| 81 | + "print(f\"Project root: {project_root}\")\n", |
| 82 | + "os.environ[\"OUTPUT_MODE\"] = \"\"" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": null, |
| 88 | + "id": "6", |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "# Automatically reload modules before executing code (set this up BEFORE imports)\n", |
| 93 | + "%load_ext autoreload\n", |
| 94 | + "%autoreload 2\n", |
| 95 | + "\n", |
| 96 | + "# Add project root to sys.path for module imports\n", |
| 97 | + "if project_root not in sys.path:\n", |
| 98 | + " sys.path.insert(0, project_root)\n", |
| 99 | + "\n", |
| 100 | + "from src.analysis import ResourceHoarding as ResourceHoarding\n", |
| 101 | + "from src.analysis import efficiency_analysis as ea\n", |
| 102 | + "from src.visualization import JobsWithMetricsVisualizer, UsersWithMetricsVisualizer\n", |
| 103 | + "from src.config.enum_constants import ResourceHoardingDataFrameNameEnum" |
| 104 | + ] |
| 105 | + }, |
| 106 | + { |
| 107 | + "cell_type": "code", |
| 108 | + "execution_count": null, |
| 109 | + "id": "7", |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "# Load the jobs DataFrame from DuckDB\n", |
| 114 | + "preprocessed_jobs_df = ea.load_preprocessed_jobs_dataframe_from_duckdb(\n", |
| 115 | + " db_path=\"../data/slurm_data.db\",\n", |
| 116 | + " table_name=\"Jobs\",\n", |
| 117 | + ")\n", |
| 118 | + "display(preprocessed_jobs_df.head(10))\n", |
| 119 | + "print(preprocessed_jobs_df.shape)" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "markdown", |
| 124 | + "id": "8", |
| 125 | + "metadata": {}, |
| 126 | + "source": [ |
| 127 | + "### <a id='toc1_1_1_'></a>[Filter jobs for resource hoarding analysis](#toc0_)" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": null, |
| 133 | + "id": "9", |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "hoarding_analysis = ResourceHoarding(jobs_df=preprocessed_jobs_df)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "id": "10", |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [ |
| 147 | + "filtered_jobs = hoarding_analysis.filter_jobs_for_analysis()\n", |
| 148 | + "filtered_jobs" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "markdown", |
| 153 | + "id": "11", |
| 154 | + "metadata": {}, |
| 155 | + "source": [ |
| 156 | + "## <a id='toc1_2_'></a>[Analyze Jobs Hoarding Resources:](#toc0_)\n" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "markdown", |
| 161 | + "id": "12", |
| 162 | + "metadata": {}, |
| 163 | + "source": [ |
| 164 | + "#### <a id='toc1_2_1_1_'></a>[Generate all hoarding analysis metrics for jobs:](#toc0_)" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": null, |
| 170 | + "id": "13", |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "memory_hoarding_jobs = hoarding_analysis.calculate_node_resource_hoarding_for_jobs(filtered_jobs)\n", |
| 175 | + "\n", |
| 176 | + "# Set option to display all columns\n", |
| 177 | + "pd.set_option(\"display.max_columns\", None)\n", |
| 178 | + "# Display the DataFrame\n", |
| 179 | + "display(memory_hoarding_jobs.head(10))\n", |
| 180 | + "# To revert to default settings (optional)\n", |
| 181 | + "pd.reset_option(\"display.max_columns\")\n", |
| 182 | + "\n", |
| 183 | + "print(f\"Jobs found: {len(memory_hoarding_jobs)}\")" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "markdown", |
| 188 | + "id": "14", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "#### <a id='toc1_2_1_2_'></a>[Find most inefficient jobs hoarding node RAM based on `ram_hoarding_fraction_diff`](#toc0_)" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": null, |
| 197 | + "id": "15", |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [], |
| 200 | + "source": [ |
| 201 | + "inefficient_jobs_hoarding_ram = hoarding_analysis.sort_and_filter_records_with_metrics(\n", |
| 202 | + " metrics_df_name_enum=ResourceHoardingDataFrameNameEnum.JOBS_WITH_RESOURCE_HOARDING_METRICS,\n", |
| 203 | + " sorting_key=\"ram_hoarding_fraction_diff\",\n", |
| 204 | + " ascending=False, # Sort in descending order\n", |
| 205 | + " filter_criteria={\"ram_hoarding_fraction_diff\": {\"min\": 0, \"inclusive\": True}},\n", |
| 206 | + ")\n", |
| 207 | + "# Display top inefficient users by RAM hoarding fraction\n", |
| 208 | + "print(\"\\nTop inefficient Jobs by RAM hoarding fraction:\")\n", |
| 209 | + "display(inefficient_jobs_hoarding_ram.head(10))\n", |
| 210 | + "\n", |
| 211 | + "# Plot top inefficient jobs by RAM hoarding fraction, with RAM hoarding fraction as labels\n", |
| 212 | + "jobs_with_metrics_visualizer = JobsWithMetricsVisualizer(inefficient_jobs_hoarding_ram.head(20))\n", |
| 213 | + "jobs_with_metrics_visualizer.visualize(\n", |
| 214 | + " column=\"ram_hoarding_fraction_diff\",\n", |
| 215 | + " bar_label_columns=[\"ram_hoarding_fraction_diff\", \"cpu_mem_efficiency\", \"alloc_vram_efficiency\"],\n", |
| 216 | + " figsize=(12, 12),\n", |
| 217 | + ")" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "markdown", |
| 222 | + "id": "16", |
| 223 | + "metadata": {}, |
| 224 | + "source": [ |
| 225 | + "#### <a id='toc1_2_1_3_'></a>[Find most inefficient jobs hoarding CPU cores based on `core_hoarding_fraction_diff`](#toc0_)" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "code", |
| 230 | + "execution_count": null, |
| 231 | + "id": "17", |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [], |
| 234 | + "source": [ |
| 235 | + "inefficient_jobs_hoarding_cpu_cores = hoarding_analysis.sort_and_filter_records_with_metrics(\n", |
| 236 | + " metrics_df_name_enum=ResourceHoardingDataFrameNameEnum.JOBS_WITH_RESOURCE_HOARDING_METRICS,\n", |
| 237 | + " sorting_key=\"core_hoarding_fraction_diff\",\n", |
| 238 | + " ascending=False, # Sort in descending order\n", |
| 239 | + " filter_criteria={\"core_hoarding_fraction_diff\": {\"min\": 0, \"inclusive\": True}},\n", |
| 240 | + ")\n", |
| 241 | + "# Display top inefficient users by CPU core hoarding fraction\n", |
| 242 | + "print(\"\\nTop inefficient Jobs by CPU core hoarding fraction:\")\n", |
| 243 | + "display(inefficient_jobs_hoarding_cpu_cores.head(10))\n", |
| 244 | + "\n", |
| 245 | + "# Plot top inefficient jobs by CPU core hoarding fraction, with CPU core hoarding fraction as labels\n", |
| 246 | + "jobs_with_metrics_visualizer = JobsWithMetricsVisualizer(inefficient_jobs_hoarding_cpu_cores.head(20))\n", |
| 247 | + "jobs_with_metrics_visualizer.visualize(\n", |
| 248 | + " column=\"core_hoarding_fraction_diff\",\n", |
| 249 | + " bar_label_columns=[\"core_hoarding_fraction_diff\", \"ram_hoarding_fraction_diff\", \"alloc_vram_efficiency\"],\n", |
| 250 | + " figsize=(12, 12),\n", |
| 251 | + ")" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "cell_type": "markdown", |
| 256 | + "id": "18", |
| 257 | + "metadata": {}, |
| 258 | + "source": [ |
| 259 | + "## <a id='toc1_3_'></a>[Analyze Users Hoarding Resources:](#toc0_)\n" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "markdown", |
| 264 | + "id": "19", |
| 265 | + "metadata": {}, |
| 266 | + "source": [ |
| 267 | + "#### <a id='toc1_3_1_1_'></a>[Generate all hoarding analysis metrics for users:](#toc0_)" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": null, |
| 273 | + "id": "20", |
| 274 | + "metadata": {}, |
| 275 | + "outputs": [], |
| 276 | + "source": [ |
| 277 | + "memory_hoarding_users = hoarding_analysis.calculate_node_resource_hoarding_for_users(filtered_jobs)\n", |
| 278 | + "display(memory_hoarding_users)" |
| 279 | + ] |
| 280 | + }, |
| 281 | + { |
| 282 | + "cell_type": "markdown", |
| 283 | + "id": "21", |
| 284 | + "metadata": {}, |
| 285 | + "source": [ |
| 286 | + "#### <a id='toc1_3_1_2_'></a>[Find most inefficient users hoarding node RAM based on `expected_value_ram_hoarding_fraction_diff`](#toc0_)" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "code", |
| 291 | + "execution_count": null, |
| 292 | + "id": "22", |
| 293 | + "metadata": {}, |
| 294 | + "outputs": [], |
| 295 | + "source": [ |
| 296 | + "inefficient_users_hoarding_ram = hoarding_analysis.sort_and_filter_records_with_metrics(\n", |
| 297 | + " metrics_df_name_enum=ResourceHoardingDataFrameNameEnum.USERS_WITH_RESOURCE_HOARDING_METRICS,\n", |
| 298 | + " sorting_key=\"expected_value_ram_hoarding_fraction_diff\",\n", |
| 299 | + " ascending=False, # Sort in descending order\n", |
| 300 | + " filter_criteria={\"expected_value_ram_hoarding_fraction_diff\": {\"min\": 0, \"inclusive\": True}},\n", |
| 301 | + ")\n", |
| 302 | + "# Display top inefficient users by RAM hoarding fraction\n", |
| 303 | + "\n", |
| 304 | + "print(\"\\nTop inefficient Users by RAM hoarding fraction:\")\n", |
| 305 | + "display(inefficient_users_hoarding_ram.head(10))\n", |
| 306 | + "\n", |
| 307 | + "# Plot top inefficient users by RAM hoarding fraction, with RAM hoarding fraction as labels\n", |
| 308 | + "users_with_metrics_visualizer = UsersWithMetricsVisualizer(inefficient_users_hoarding_ram.head(20))\n", |
| 309 | + "users_with_metrics_visualizer.visualize(\n", |
| 310 | + " column=\"expected_value_ram_hoarding_fraction_diff\",\n", |
| 311 | + " bar_label_columns=[\n", |
| 312 | + " \"expected_value_ram_hoarding_fraction_diff\",\n", |
| 313 | + " \"expected_value_core_hoarding_fraction_diff\",\n", |
| 314 | + " \"expected_value_alloc_vram_efficiency\",\n", |
| 315 | + " ],\n", |
| 316 | + " figsize=(14, 12),\n", |
| 317 | + ")" |
| 318 | + ] |
| 319 | + }, |
| 320 | + { |
| 321 | + "cell_type": "markdown", |
| 322 | + "id": "23", |
| 323 | + "metadata": {}, |
| 324 | + "source": [ |
| 325 | + "#### <a id='toc1_3_1_3_'></a>[Find most inefficient users hoarding CPU cores based on `expected_value_core_hoarding_fraction_diff`](#toc0_)" |
| 326 | + ] |
| 327 | + }, |
| 328 | + { |
| 329 | + "cell_type": "code", |
| 330 | + "execution_count": null, |
| 331 | + "id": "24", |
| 332 | + "metadata": {}, |
| 333 | + "outputs": [], |
| 334 | + "source": [ |
| 335 | + "inefficient_users_hoarding_cpu_cores = hoarding_analysis.sort_and_filter_records_with_metrics(\n", |
| 336 | + " metrics_df_name_enum=ResourceHoardingDataFrameNameEnum.USERS_WITH_RESOURCE_HOARDING_METRICS,\n", |
| 337 | + " sorting_key=\"expected_value_core_hoarding_fraction_diff\",\n", |
| 338 | + " ascending=False, # Sort in descending order\n", |
| 339 | + " filter_criteria={\"expected_value_core_hoarding_fraction_diff\": {\"min\": 0, \"inclusive\": True}},\n", |
| 340 | + ")\n", |
| 341 | + "# Display top inefficient users by CPU core hoarding fraction\n", |
| 342 | + "\n", |
| 343 | + "print(\"\\nTop inefficient Users by CPU core hoarding fraction:\")\n", |
| 344 | + "display(inefficient_users_hoarding_cpu_cores.head(10))\n", |
| 345 | + "\n", |
| 346 | + "# Plot top inefficient users by CPU core hoarding fraction, with CPU core hoarding fraction as labels\n", |
| 347 | + "users_with_metrics_visualizer = UsersWithMetricsVisualizer(inefficient_users_hoarding_cpu_cores.head(20))\n", |
| 348 | + "users_with_metrics_visualizer.visualize(\n", |
| 349 | + " column=\"expected_value_core_hoarding_fraction_diff\",\n", |
| 350 | + " bar_label_columns=[\n", |
| 351 | + " \"expected_value_core_hoarding_fraction_diff\",\n", |
| 352 | + " \"expected_value_ram_hoarding_fraction_diff\",\n", |
| 353 | + " \"expected_value_alloc_vram_efficiency\",\n", |
| 354 | + " ],\n", |
| 355 | + " figsize=(14, 12),\n", |
| 356 | + ")" |
| 357 | + ] |
| 358 | + } |
| 359 | + ], |
| 360 | + "metadata": { |
| 361 | + "language_info": { |
| 362 | + "name": "python" |
| 363 | + } |
| 364 | + }, |
| 365 | + "nbformat": 4, |
| 366 | + "nbformat_minor": 5 |
| 367 | +} |
0 commit comments