Skip to content

Commit 02a2b3a

Browse files
Update example notebook URLs to point to GitHub (#735)
Co-authored-by: Maria Khalusova <[email protected]>
1 parent bf45420 commit 02a2b3a

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

examplecode/notebooks.mdx

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ description: "Notebooks contain complete working sample code for end-to-end solu
2020
``Unstructured API`` ``Partition Endpoint`` ``Local file``
2121
<br/>
2222
</Card>
23-
<Card title="Preserving Table Structure for Better Retrieval" href="https://colab.research.google.com/drive/1__axq0MRDR9i1M_uEW-pR8aKYH_Qk1hj?usp=sharing">
23+
<Card title="Preserving Table Structure for Better Retrieval" href="https://colab.research.google.com/github/Unstructured-IO/notebooks/blob/main/notebooks/Preserving_Table_Structure_for_Better_Retrieval.ipynb">
2424
<br/>
2525
This notebook explores using Unstructured API to process financial documents while preserving tabular structure in a way that's usable by downstream applications.
2626
<br/>
@@ -33,14 +33,14 @@ description: "Notebooks contain complete working sample code for end-to-end solu
3333
``Unstructured API`` ``Workflows`` ``S3`` ``VLM`` ``NER`` ``Elasticsearch`` ``MLK`` ``National Archives``
3434
<br/>
3535
</Card>
36-
<Card title="Rag without Embeddings" href="https://colab.research.google.com/drive/1s2sD4FXj8Kw0gzx_00D_09tuYMepKK3_?usp=sharing">
36+
<Card title="RAG without Embeddings" href="https://colab.research.google.com/github/Unstructured-IO/notebooks/blob/main/notebooks/Rag_without_Embeddings.ipynb">
3737
<br/>
3838
Learn how to build a RAG pipeline without any embedding models. Use Unstructured to preprocess documents, index them into Elasticsearch, and retrieve using classic BM25 scoring.
3939
<br/>
4040
``Unstructured API`` ``Workflows`` ``Elasticsearch`` ``BM25``
4141
<br/>
4242
</Card>
43-
<Card title="Getting Started with Unstructured API and Redis" href="https://colab.research.google.com/drive/1MOi3OSpR14BFF6aaMwrld1d0u4mn8LGE?usp=sharing">
43+
<Card title="Getting Started with Unstructured API and Redis" href="https://colab.research.google.com/github/Unstructured-IO/notebooks/blob/main/notebooks/Getting_Started_with_Unstructured_API_and_Redis.ipynb">
4444
<br/>
4545
Learn how to build data processing workflows using the Unstructured API and Python SDK to preprocess unstructured files from S3 and store the structured outputs in Redis Cloud for retrieval.
4646
<br/>
@@ -54,7 +54,7 @@ description: "Notebooks contain complete working sample code for end-to-end solu
5454
``Unstructured API`` ``Workflows`` ``S3`` ``Qdrant`` ``VLM`` ``Embeddings``
5555
<br/>
5656
</Card>
57-
<Card title="Two-stage retrieval: similarity search + rerankers" href="https://colab.research.google.com/drive/1paDKrn_3WepcZ0D4eN-dhIv1s3oGU9Tl?usp=sharing">
57+
<Card title="Two-stage retrieval: similarity search + rerankers" href="https://colab.research.google.com/github/Unstructured-IO/notebooks/blob/main/notebooks/Rag_with_Reranking.ipynb">
5858
<br/>
5959
Improve RAG precision with a two-stage retrieval pipeline: fast vector search followed by reranking using Cohere’s re-ranker models.
6060
<br/>

0 commit comments

Comments
 (0)