Skip to content

Commit 4c1bed6

Browse files
Update docs to remove langchain- (#271)
1 parent 3ee819e commit 4c1bed6

File tree

80 files changed

+109
-109
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

80 files changed

+109
-109
lines changed

api-reference/how-to/embedding.mdx

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -43,41 +43,41 @@ To use the Ingest CLI or Ingest Python library to generate embeddings, do the fo
4343

4444
1. Choose an embedding provider that you want to use from among the following allowed providers, and note the provider's ID:
4545

46-
- The provider ID `langchain-aws-bedrock` for [Amazon Bedrock](https://aws.amazon.com/bedrock/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/bedrock/).
47-
- `langchain-huggingface` for [Hugging Face](https://huggingface.co/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/huggingfacehub/).
48-
- `langchain-openai` for [OpenAI](https://openai.com/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/openai/).
49-
- `langchain-vertexai` for [Google Vertex AI PaLM](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/google_vertex_ai_palm/).
50-
- `langchain-voyageai` for [Voyage AI](https://www.voyageai.com/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/voyageai/).
46+
- The provider ID `aws-bedrock` for [Amazon Bedrock](https://aws.amazon.com/bedrock/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/bedrock/).
47+
- `huggingface` for [Hugging Face](https://huggingface.co/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/huggingfacehub/).
48+
- `openai` for [OpenAI](https://openai.com/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/openai/).
49+
- `vertexai` for [Google Vertex AI PaLM](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/google_vertex_ai_palm/).
50+
- `voyageai` for [Voyage AI](https://www.voyageai.com/). [Learn more](https://python.langchain.com/v0.2/docs/integrations/text_embedding/voyageai/).
5151
- `mixedbread-ai` for [Mixedbread](https://www.mixedbread.ai/). [Learn more](https://www.mixedbread.ai/docs/embeddings/overview).
5252
- `octoai` for [Octo AI](https://octo.ai/). [Learn more](https://octo.ai/docs/text-gen-solution/using-unstructured-io-for-embedding-documents).
5353

5454
2. Run the following command to install the required Python package for the embedding provider:
5555

56-
- For `langchain-aws-bedrock`, run `pip install "unstructured-ingest[bedrock]"`.
57-
- For `langchain-huggingface`, run `pip install "unstructured-ingest[embed-huggingface]"`.
58-
- For `langchain-openai`, run `pip install "unstructured-ingest[openai]"`.
59-
- For `langchain-vertexai`, run `pip install "unstructured-ingest[embed-vertexai]"`.
60-
- For `langchain-voyageai`, run `pip install "unstructured-ingest[embed-voyageai]"`.
56+
- For `aws-bedrock`, run `pip install "unstructured-ingest[bedrock]"`.
57+
- For `huggingface`, run `pip install "unstructured-ingest[embed-huggingface]"`.
58+
- For `openai`, run `pip install "unstructured-ingest[openai]"`.
59+
- For `vertexai`, run `pip install "unstructured-ingest[embed-vertexai]"`.
60+
- For `voyageai`, run `pip install "unstructured-ingest[embed-voyageai]"`.
6161
- For `mixedbread-ai`, run `pip install "unstructured-ingest[embed-mixedbreadai]"`.
6262
- For `octoai`, run `pip install "unstructured-ingest[embed-octoai]"`.
6363

6464
3. For the following embedding providers, you can choose the model that you want to use. If you do choose a model, note the model's name:
6565

66-
- `langchain-aws-bedrock`. [Choose a model](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html). No default model is provided. [Learn more about the supported models](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
67-
- `langchain-huggingface`. [Choose a model](https://huggingface.co/models?other=embeddings), or use the default model [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2).
68-
- `langchain-openai`. [Choose a model](https://platform.openai.com/docs/guides/embeddings/embedding-models), or use the default model `text-embedding-ada-002`.
69-
- `langchain-vertexai`. [Choose a model](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api), or use the default model `textembedding-gecko@001`.
70-
- `langchain-voyageai`. [Choose a model](https://docs.voyageai.com/docs/embeddings). No default model is provided.
66+
- `aws-bedrock`. [Choose a model](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html). No default model is provided. [Learn more about the supported models](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
67+
- `huggingface`. [Choose a model](https://huggingface.co/models?other=embeddings), or use the default model [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2).
68+
- `openai`. [Choose a model](https://platform.openai.com/docs/guides/embeddings/embedding-models), or use the default model `text-embedding-ada-002`.
69+
- `vertexai`. [Choose a model](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api), or use the default model `textembedding-gecko@001`.
70+
- `voyageai`. [Choose a model](https://docs.voyageai.com/docs/embeddings). No default model is provided.
7171
- `mixedbread-ai`. [Choose a model](https://www.mixedbread.ai/docs/embeddings/models), or use the default model [mixedbread-ai/mxbai-embed-large-v1](https://www.mixedbread.ai/docs/embeddings/mxbai-embed-large-v1).
7272
- `octoai`. [Choose a model](https://octo.ai/blog/supercharge-rag-performance-using-octoai-and-unstructured-embeddings/), or use the default model `thenlper/gte-large`.
7373

7474
4. Note the special settings to connect to the provider:
7575

76-
- For `langchain-aws-bedrock`, you'll need an AWS access key value, the corresponding AWS secret access key value, and the corresponding AWS Region identifier. [Get an AWS access key and secret access key](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html).
77-
- For `langchain-huggingface`, if you use a gated model (a model with special conditions that you must accept before you can use it, or a privately published model), you'll need an HF inference API key value, beginning with `hf_`. [Get an HF inference API key](https://huggingface.co/docs/api-inference/en/quicktour#get-your-api-token). To learn whether your model requires an HF inference API key, see your model provider's documentation.
78-
- For `langchain-openai`, you'll need an OpenAI API key value. [Get an OpenAI API key](https://platform.openai.com/docs/quickstart/create-and-export-an-api-key).
79-
- For `langchain-vertexai`, you'll need the path to a Google Cloud credentials JSON file. Learn more [here](https://cloud.google.com/docs/authentication/application-default-credentials#GAC) and [here](https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth).
80-
- For `langchain-voyageai`, you'll need a Voyage AI API key value. [Get a Voyage AI API key](https://docs.voyageai.com/docs/api-key-and-installation#authentication-with-api-keys).
76+
- For `aws-bedrock`, you'll need an AWS access key value, the corresponding AWS secret access key value, and the corresponding AWS Region identifier. [Get an AWS access key and secret access key](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html).
77+
- For `huggingface`, if you use a gated model (a model with special conditions that you must accept before you can use it, or a privately published model), you'll need an HF inference API key value, beginning with `hf_`. [Get an HF inference API key](https://huggingface.co/docs/api-inference/en/quicktour#get-your-api-token). To learn whether your model requires an HF inference API key, see your model provider's documentation.
78+
- For `openai`, you'll need an OpenAI API key value. [Get an OpenAI API key](https://platform.openai.com/docs/quickstart/create-and-export-an-api-key).
79+
- For `vertexai`, you'll need the path to a Google Cloud credentials JSON file. Learn more [here](https://cloud.google.com/docs/authentication/application-default-credentials#GAC) and [here](https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth).
80+
- For `voyageai`, you'll need a Voyage AI API key value. [Get a Voyage AI API key](https://docs.voyageai.com/docs/api-key-and-installation#authentication-with-api-keys).
8181
- For `mixedbread-ai`, you'll need a Mixedbread API key value. [Get a Mixedbread API key](https://www.mixedbread.ai/dashboard?next=api-keys).
8282
- For `octoai`, you'll need an Octo AI API token value. [Get an Octo AI API token](https://octo.ai/docs/getting-started/how-to-create-octoai-access-token).
8383

@@ -87,10 +87,10 @@ To use the Ingest CLI or Ingest Python library to generate embeddings, do the fo
8787
<Accordion title="Ingest CLI">
8888
For the [source connector](/api-reference/ingest/source-connectors/overview) command:
8989

90-
- Set the command's `--embedding-provider` to the provider's ID, for example `langchain-huggingface`.
90+
- Set the command's `--embedding-provider` to the provider's ID, for example `huggingface`.
9191
- Set `--embedding-model-name` to the model name, as applicable, for example `sentence-transformers/sentence-t5-xl`. Or omit this to use the default model, as applicable.
9292
- Set `--embedding-api-key` to the provider's required API key value or credentials JSON file path, as appropriate.
93-
- For `langchain-aws-bedrock`:
93+
- For `aws-bedrock`:
9494

9595
- Set `--embedding-aws-access-key-id` to the AWS access key value.
9696
- Set `--embedding-aws-secret-access-key` to the corresponding AWS secret access key value.
@@ -99,10 +99,10 @@ To use the Ingest CLI or Ingest Python library to generate embeddings, do the fo
9999
<Accordion title="Ingest Python library">
100100
For the [source connector's](/api-reference/ingest/source-connectors/overview) `EmbedderConfig` object:
101101

102-
- Set the `embedding_provider` parameter to the provider's ID, for example `langchain-huggingface`.
102+
- Set the `embedding_provider` parameter to the provider's ID, for example `huggingface`.
103103
- Set `embedding_model_name` to the model name, as applicable, for example `sentence-transformers/sentence-t5-xl`. Or omit this to use the default model, as applicable.
104104
- Set `embedding_api_key` to the provider's required API key value or credentials JSON file path, as appropriate.
105-
- For `langchain-aws-bedrock`:
105+
- For `aws-bedrock`:
106106

107107
- Set `embedding_aws_access_key_id` to the AWS access key value.
108108
- Set `embedding_aws_secret_access_key` to the corresponding AWS secret access key value.

snippets/destination_connectors/astradb.sh.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ unstructured-ingest \
99
--partition-by-api \
1010
--strategy hi_res \
1111
--chunking-strategy by_title \
12-
--embedding-provider langchain-huggingface \
12+
--embedding-provider huggingface \
1313
--partition-by-api \
1414
--api-key $UNSTRUCTURED_API_KEY \
1515
--partition-endpoint $UNSTRUCTURED_API_URL \

snippets/destination_connectors/astradb.v1.py.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ if __name__ == "__main__":
5757
),
5858
chunking_config=ChunkingConfig(chunk_elements=True),
5959
embedding_config=EmbeddingConfig(
60-
provider="langchain-huggingface",
60+
provider="huggingface",
6161
api_key=None,
6262
),
6363
writer=writer,

snippets/destination_connectors/astradb.v2.py.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ if __name__ == "__main__":
3939
}
4040
),
4141
chunker_config=ChunkerConfig(chunking_strategy="by_title"),
42-
embedder_config=EmbedderConfig(embedding_provider="langchain-huggingface"),
42+
embedder_config=EmbedderConfig(embedding_provider="huggingface"),
4343
destination_connection_config=AstraDBConnectionConfig(
4444
access_config=AstraDBAccessConfig(
4545
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT"),

snippets/destination_connectors/azure.sh.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ unstructured-ingest \
1111
--partition-endpoint $UNSTRUCTURED_API_URL \
1212
--strategy hi_res \
1313
--chunking-strategy by_title \
14-
--embedding-provider langchain-huggingface \
14+
--embedding-provider huggingface \
1515
--additional-partition-args="{\"split_pdf_page\":\"true\", \"split_pdf_allow_failed\":\"true\", \"split_pdf_concurrency_level\": 15}" \
1616
azure \
1717
--remote-url $AZURE_STORAGE_REMOTE_URL \

snippets/destination_connectors/azure.v1.py.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ if __name__ == "__main__":
5151
),
5252
chunking_config=ChunkingConfig(chunk_elements=True),
5353
embedding_config=EmbeddingConfig(
54-
provider="langchain-huggingface",
54+
provider="huggingface",
5555
api_key=None
5656
),
5757
writer=writer,

snippets/destination_connectors/azure.v2.py.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ if __name__ == "__main__":
3838
}
3939
),
4040
chunker_config=ChunkerConfig(chunking_strategy="by_title"),
41-
embedder_config=EmbedderConfig(embedding_provider="langchain-huggingface"),
41+
embedder_config=EmbedderConfig(embedding_provider="huggingface"),
4242
destination_connection_config=AzureConnectionConfig(
4343
access_config=AzureAccessConfig(
4444
account_name=os.getenv("AZURE_STORAGE_ACCOUNT_NAME"),

snippets/destination_connectors/azure_cognitive_search.sh.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ unstructured-ingest \
88
--input-path $LOCAL_FILE_INPUT_DIR \
99
--output-dir $LOCAL_FILE_OUTPUT_DIR \
1010
--chunk-elements \
11-
--embedding-provider langchain-huggingface \
11+
--embedding-provider huggingface \
1212
--num-processes 2 \
1313
--verbose \
1414
--partition-by-api \

snippets/destination_connectors/azure_cognitive_search.v1.py.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ if __name__ == "__main__":
5252
),
5353
chunking_config=ChunkingConfig(chunk_elements=True),
5454
embedding_config=EmbeddingConfig(
55-
provider="langchain-huggingface",
55+
provider="huggingface",
5656
api_key=None
5757
),
5858
writer=writer,

snippets/destination_connectors/azure_cognitive_search.v2.py.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ if __name__ == "__main__":
3838
}
3939
),
4040
chunker_config=ChunkerConfig(chunking_strategy="by_title"),
41-
embedder_config=EmbedderConfig(embedding_provider="langchain-huggingface"),
41+
embedder_config=EmbedderConfig(embedding_provider="huggingface"),
4242
destination_connection_config=AzureCognitiveSearchConnectionConfig(
4343
access_config=AzureCognitiveSearchAccessConfig(
4444
key=os.getenv("AZURE_SEARCH_API_KEY")

0 commit comments

Comments
 (0)