|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "2fac3543", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Loading Data into Spacy" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "30bc0a1b", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "The goal of this notebook is to show you how to start a spacy project with Unstructured's Elements. This allows you to create your NLP projects.\n", |
| 17 | + "\n", |
| 18 | + "Make sure you have Spacy installed on your local computer before running this notebook. If not, you can find the instructions for installation [here](https://spacy.io/usage)." |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "ac83c096", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "# Preprocess Documents with Unstructured" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "id": "a29ef57d", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "First, we'll pre-process a few documents using the the `unstructured` libraries. The example documents are available under the `example-docs` directory in the `unstructured` repo. At the end of this section, we'll wind up with a list of `Element` objects that we can pass into an `unstructured` staging brick." |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 3, |
| 40 | + "id": "adb6b8f7", |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "import os\n", |
| 45 | + "\n", |
| 46 | + "from unstructured.partition.auto import partition" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": 8, |
| 52 | + "id": "8464299b", |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "# NOTE: Update this directory if you are running the notebook\n", |
| 57 | + "# from somewhere other than the examples/spacy folder in the\n", |
| 58 | + "# unstructured repo\n", |
| 59 | + "EXAMPLE_DOCS_FOLDER = \"../../example-docs/\"" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "code", |
| 64 | + "execution_count": 9, |
| 65 | + "id": "2fd24424", |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "document_to_process = \"fake-memo.pdf\"\n", |
| 70 | + "filename = os.path.join(EXAMPLE_DOCS_FOLDER, document_to_process)\n", |
| 71 | + "elements = partition(filename=filename, strategy=\"fast\")" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 10, |
| 77 | + "id": "0aa45e81", |
| 78 | + "metadata": {}, |
| 79 | + "outputs": [ |
| 80 | + { |
| 81 | + "data": { |
| 82 | + "text/plain": [ |
| 83 | + "'May 5, 2023'" |
| 84 | + ] |
| 85 | + }, |
| 86 | + "execution_count": 10, |
| 87 | + "metadata": {}, |
| 88 | + "output_type": "execute_result" |
| 89 | + } |
| 90 | + ], |
| 91 | + "source": [ |
| 92 | + "elements[0].text" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 11, |
| 98 | + "id": "2429f8a5", |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [ |
| 101 | + { |
| 102 | + "data": { |
| 103 | + "text/plain": [ |
| 104 | + "{'filename': 'fake-memo.pdf',\n", |
| 105 | + " 'file_directory': '../../example-docs',\n", |
| 106 | + " 'filetype': 'application/pdf',\n", |
| 107 | + " 'page_number': 1}" |
| 108 | + ] |
| 109 | + }, |
| 110 | + "execution_count": 11, |
| 111 | + "metadata": {}, |
| 112 | + "output_type": "execute_result" |
| 113 | + } |
| 114 | + ], |
| 115 | + "source": [ |
| 116 | + "elements[0].metadata.to_dict()" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "id": "1fd556ff", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "# Extract Numbers Using Spacy\n" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "markdown", |
| 129 | + "id": "bdf2cefe", |
| 130 | + "metadata": {}, |
| 131 | + "source": [ |
| 132 | + "Now let's import `spacy` and create a function to extract noun phrases with numbers. First we'll use a simple example then we'll use the text extracted by `unstructured`.\n", |
| 133 | + "\n", |
| 134 | + "The function first creates a spacy object with the text, then iterates through the spacy object to find the noun phrases with numbers. It then formats the phrases and appends to a list." |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": 1, |
| 140 | + "id": "bfd20f75", |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [ |
| 143 | + { |
| 144 | + "name": "stdout", |
| 145 | + "output_type": "stream", |
| 146 | + "text": [ |
| 147 | + "Number: 10, Noun: apples, Context: 10 apples\n", |
| 148 | + "Number: 5, Noun: oranges, Context: 5 oranges\n" |
| 149 | + ] |
| 150 | + } |
| 151 | + ], |
| 152 | + "source": [ |
| 153 | + "import spacy\n", |
| 154 | + "\n", |
| 155 | + "nlp = spacy.load(\"en_core_web_sm\")\n", |
| 156 | + "\n", |
| 157 | + "def extract_numbers_with_context(text):\n", |
| 158 | + " doc = nlp(text)\n", |
| 159 | + " numbers = []\n", |
| 160 | + " \n", |
| 161 | + " for token in doc:\n", |
| 162 | + " if token.like_num and token.dep_ == 'nummod' and token.head.pos_ == 'NOUN':\n", |
| 163 | + " number = token.text\n", |
| 164 | + " noun = token.head.text\n", |
| 165 | + " context = ' '.join([number, noun])\n", |
| 166 | + " numbers.append((number, noun, context))\n", |
| 167 | + " \n", |
| 168 | + " return numbers\n", |
| 169 | + "\n", |
| 170 | + "# Example usage\n", |
| 171 | + "text = \"I bought 10 apples and 5 oranges yesterday.\"\n", |
| 172 | + "numbers_with_context = extract_numbers_with_context(text)\n", |
| 173 | + "\n", |
| 174 | + "for number, noun, context in numbers_with_context:\n", |
| 175 | + " print(f\"Number: {number}, Noun: {noun}, Context: {context}\")" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "markdown", |
| 180 | + "id": "7eae9735", |
| 181 | + "metadata": {}, |
| 182 | + "source": [ |
| 183 | + "### Using the Data Extracted with Unstructured's Library" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "code", |
| 188 | + "execution_count": 28, |
| 189 | + "id": "7c738f91", |
| 190 | + "metadata": {}, |
| 191 | + "outputs": [], |
| 192 | + "source": [ |
| 193 | + "numbers_with_context = extract_numbers_with_context(elements[2].text)" |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "code", |
| 198 | + "execution_count": 29, |
| 199 | + "id": "3459555b", |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [ |
| 202 | + { |
| 203 | + "name": "stdout", |
| 204 | + "output_type": "stream", |
| 205 | + "text": [ |
| 206 | + "Number: 20,000, Noun: bottles, Context: 20,000 bottles\n", |
| 207 | + "Number: 10,000, Noun: blankets, Context: 10,000 blankets\n", |
| 208 | + "Number: 200, Noun: laptops, Context: 200 laptops\n", |
| 209 | + "Number: 3, Noun: trucks, Context: 3 trucks\n", |
| 210 | + "Number: 15, Noun: hours, Context: 15 hours\n" |
| 211 | + ] |
| 212 | + } |
| 213 | + ], |
| 214 | + "source": [ |
| 215 | + "for number, noun, context in numbers_with_context:\n", |
| 216 | + " print(f\"Number: {number}, Noun: {noun}, Context: {context}\")" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "code", |
| 221 | + "execution_count": null, |
| 222 | + "id": "dadd055a", |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [] |
| 226 | + } |
| 227 | + ], |
| 228 | + "metadata": { |
| 229 | + "kernelspec": { |
| 230 | + "display_name": "Python 3 (ipykernel)", |
| 231 | + "language": "python", |
| 232 | + "name": "python3" |
| 233 | + }, |
| 234 | + "language_info": { |
| 235 | + "codemirror_mode": { |
| 236 | + "name": "ipython", |
| 237 | + "version": 3 |
| 238 | + }, |
| 239 | + "file_extension": ".py", |
| 240 | + "mimetype": "text/x-python", |
| 241 | + "name": "python", |
| 242 | + "nbconvert_exporter": "python", |
| 243 | + "pygments_lexer": "ipython3", |
| 244 | + "version": "3.8.15" |
| 245 | + } |
| 246 | + }, |
| 247 | + "nbformat": 4, |
| 248 | + "nbformat_minor": 5 |
| 249 | +} |
0 commit comments