Skip to content

Commit 0ed5b00

Browse files
authored
Merge pull request #73 from dtaivpp/main
Adding modules pages and sublinks
2 parents 0a4048c + df382a6 commit 0ed5b00

File tree

11 files changed

+433
-14
lines changed

11 files changed

+433
-14
lines changed

docs/docs/blade/guides/gpio.mdx

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,8 @@ View an interactive guide to the full Raspberry Pi GPIO pinout on [Pinout.xyz](h
3939
<Tabs groupId='pinout'>
4040
<TabItem value="Expansion" label="Expansion Module Port" default>
4141
The Expansion Module Port is pin 1 through pin 10 of the Raspberry Pi GPIO pinout.
42-
This makes the Expansion Module Port compatible with many existing products like Real Time Clock Modules or I2C Devices.
42+
This makes the Expansion Module Port compatible with many existing products like [Real Time Clock Modules or I2C Devices](/modules).
43+
Ensure you reference the pinout on your specific Compute Blade and the module's datasheet for correct wiring.
4344
![Expansion Module Port](/img/hardware/expansion-module-port.svg)
4445
</TabItem>
4546
<TabItem value="uart" label="UART" default>

docs/docs/modules/ai.md

Lines changed: 0 additions & 5 deletions
This file was deleted.

docs/docs/modules/ai.mdx

Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,84 @@
1+
---
2+
sidebar_position: 2
3+
---
4+
5+
import Tabs from '@theme/Tabs';
6+
import TabItem from '@theme/TabItem';
7+
8+
# AI Module
9+
10+
The AI Module is currently in development and will provide enhanced artificial intelligence capabilities for edge computing applications on the Compute Blade platform.
11+
12+
![AI module](/img/module/ai/ai-module.webp)
13+
14+
## Current Status
15+
16+
The AI Module is actively being developed to bring machine learning and artificial intelligence capabilities directly to your Compute Blade setup. This module will enable:
17+
18+
- **Edge AI processing** without cloud dependencies
19+
- **Real-time inference** capabilities
20+
- **Integration** with popular ML frameworks
21+
- **Optimized performance** for Raspberry Pi hardware
22+
23+
## Planned Features
24+
25+
<Tabs groupId="ai-capabilities">
26+
<TabItem value="inference" label="Inference Engine" default>
27+
**On-device Model Inference**
28+
- Support for TensorFlow Lite models
29+
- ONNX runtime compatibility
30+
- PyTorch mobile integration
31+
- Quantized model support for faster processing
32+
</TabItem>
33+
<TabItem value="frameworks" label="ML Frameworks">
34+
**Supported Frameworks**
35+
- TensorFlow/TensorFlow Lite
36+
- PyTorch
37+
- OpenCV for computer vision
38+
- scikit-learn for classical ML
39+
- Custom model deployment tools
40+
</TabItem>
41+
<TabItem value="hardware" label="Hardware Acceleration">
42+
**Performance Optimization**
43+
- GPU acceleration where available
44+
- Multi-core CPU utilization
45+
- Memory-efficient model loading
46+
- Batch processing capabilities
47+
</TabItem>
48+
</Tabs>
49+
50+
## Use Cases
51+
52+
### Computer Vision
53+
- **Object detection** and classification
54+
- **Facial recognition** systems
55+
- **Quality control** in manufacturing
56+
- **Security monitoring** applications
57+
58+
### Natural Language Processing
59+
- **Text classification** and sentiment analysis
60+
- **Language translation** for IoT devices
61+
- **Voice command** processing
62+
- **Chatbot** deployment at the edge
63+
64+
### Predictive Analytics
65+
- **Sensor data** analysis
66+
- **Predictive maintenance** for industrial equipment
67+
- **Anomaly detection** in real-time
68+
- **Time series forecasting**
69+
70+
## Development Roadmap
71+
72+
- **Phase 1**: Core inference engine development
73+
- **Phase 2**: Framework integration and testing
74+
- **Phase 3**: Hardware optimization and acceleration
75+
- **Phase 4**: Documentation and example projects
76+
- **Phase 5**: Community beta testing
77+
78+
## Stay Updated
79+
80+
Check back for updates on the AI Module development progress and availability. Follow our [GitHub repository](https://github.com/uptime-lab) for the latest developments and early access opportunities.
81+
82+
:::info Coming Soon
83+
The AI Module is expected to be available in Q3 2025. Early access will be provided to beta testers and community contributors.
84+
:::

docs/docs/modules/index.mdx

Lines changed: 38 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
---
2+
sidebar_position: 1
3+
---
4+
5+
# Modules Overview
6+
7+
The Compute Blade ecosystem supports various modules that can enhance the functionality of your Raspberry Pi projects. These modules are designed to work seamlessly with the Compute Blade hardware and provide additional capabilities for different use cases.
8+
9+
## Available Modules
10+
11+
### Real Time Clock (RTC)
12+
13+
Real Time Clock modules help maintain accurate time tracking even when your Compute Blade is powered off. These modules use I2C communication and are essential for applications that require precise time synchronization.
14+
15+
[Learn more about RTC modules →](modules/rtc)
16+
17+
### AI Module
18+
19+
The AI Module is currently in development and will provide enhanced artificial intelligence capabilities for edge computing applications on the Compute Blade platform.
20+
21+
[Learn more about the AI Module →](modules/ai)
22+
23+
### Security Modules
24+
25+
For applications requiring additional security features, various security modules can be integrated with the Compute Blade. These modules provide hardware-based security and encryption capabilities.
26+
27+
[Learn more about security modules →](modules/zimkey4)
28+
29+
## Getting Started
30+
31+
When connecting any module to your Compute Blade, be sure to:
32+
33+
1. Consult the pinout guide on your Compute Blade
34+
2. Reference the module's datasheet for correct wiring
35+
3. Follow the specific setup instructions for each module
36+
4. Test the module functionality before deploying
37+
38+
Each module page contains detailed information about compatibility, installation, and configuration specific to that module type.

docs/docs/modules/rtc.md

Lines changed: 0 additions & 6 deletions
This file was deleted.

docs/docs/modules/rtc.mdx

Lines changed: 126 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,126 @@
1+
---
2+
sidebar_position: 3
3+
---
4+
5+
import Tabs from '@theme/Tabs';
6+
import TabItem from '@theme/TabItem';
7+
8+
# Real Time Clock
9+
10+
There are several Real Time Clock (RTC) modules available for the Raspberry Pi, which can be used to keep track of the current time even when the Pi is powered off. These modules typically use I2C communication and can be easily integrated into your projects.
11+
12+
Be sure when connecting a RTC module to use the pinout guide on your compute blade along with the pinout from the RTC modules data sheet to ensure correct wiring.
13+
14+
## Available RTC Modules
15+
16+
### Popular Options
17+
18+
<Tabs groupId="rtc-modules">
19+
<TabItem value="adafruit" label="Adafruit PiRTC" default>
20+
The [Adafruit PiRTC](https://www.adafruit.com/product/3386) is a reliable and well-documented RTC module.
21+
22+
**Features:**
23+
- Built-in battery backup
24+
- Easy I2C interface
25+
- Compatible with all Raspberry Pi models
26+
- Excellent documentation and support
27+
</TabItem>
28+
<TabItem value="ds3231" label="DS3231 Module">
29+
The [DS3231 Real Time Clock Module](https://www.pishop.us/product/ds3231-real-time-clock-module-for-raspberry-pi/) from PiShop.us offers high accuracy.
30+
31+
**Features:**
32+
- Temperature-compensated crystal oscillator
33+
- ±2ppm accuracy from 0°C to +40°C
34+
- Built-in 32.768kHz oscillator
35+
- Battery-backed SRAM
36+
</TabItem>
37+
<TabItem value="ds1307" label="DS1307 Module">
38+
The [DS1307 RTC for Raspberry Pi](https://wiki.seeedstudio.com/Pi_RTC-DS1307/) from Seeed Studio is a cost-effective option.
39+
40+
**Features:**
41+
- Low-cost solution
42+
- 56-byte battery-backed RAM
43+
- Programmable square-wave output
44+
- Automatic leap year compensation
45+
</TabItem>
46+
</Tabs>
47+
48+
## Installation
49+
50+
### Hardware Setup
51+
52+
1. **Power down** your Compute Blade before connecting any modules
53+
2. **Connect the RTC module** to your Compute Blade using I2C pins:
54+
- VCC → 3.3V or 5V (check your module's requirements)
55+
- GND → Ground
56+
- SDA → GPIO2 (Pin 3)
57+
- SCL → GPIO3 (Pin 5)
58+
3. **Insert the backup battery** (usually CR2032) into the RTC module
59+
60+
### Software Configuration
61+
62+
<Tabs groupId="installation-method">
63+
<TabItem value="auto" label="Automatic Setup" default>
64+
```bash
65+
# Enable I2C interface
66+
sudo raspi-config
67+
# Navigate to: Interfacing Options > I2C > Enable
68+
69+
# Reboot to apply changes
70+
sudo reboot
71+
72+
# Install I2C tools
73+
sudo apt update
74+
sudo apt install i2c-tools
75+
76+
# Detect the RTC module
77+
sudo i2cdetect -y 1
78+
```
79+
</TabItem>
80+
<TabItem value="manual" label="Manual Configuration">
81+
```bash
82+
# Edit the boot config
83+
sudo nano /boot/config.txt
84+
85+
# Add the following line (adjust for your RTC chip):
86+
dtoverlay=i2c-rtc,ds3231
87+
# or for DS1307: dtoverlay=i2c-rtc,ds1307
88+
89+
# Save and reboot
90+
sudo reboot
91+
92+
# Remove fake hardware clock
93+
sudo apt-get -y remove fake-hwclock
94+
sudo update-rc.d -f fake-hwclock remove
95+
```
96+
</TabItem>
97+
</Tabs>
98+
99+
### Testing Your RTC
100+
101+
```bash
102+
# Check if RTC is detected
103+
sudo hwclock -D -r
104+
105+
# Set system time to RTC
106+
sudo hwclock -w
107+
108+
# Read time from RTC
109+
sudo hwclock -r
110+
```
111+
112+
## Benefits
113+
114+
- **Persistent timekeeping**: Maintains accurate time when the system is powered off
115+
- **Low power consumption**: Uses minimal power from backup battery
116+
- **Easy integration**: Standard I2C interface works with existing projects
117+
- **Essential for logging**: Critical for applications requiring accurate timestamps
118+
- **Network independence**: No need for NTP when network is unavailable
119+
120+
## Troubleshooting
121+
122+
### Common Issues
123+
124+
- **Module not detected**: Check wiring connections and I2C enable status
125+
- **Time drift**: Ensure backup battery is properly installed and charged
126+
- **Boot issues**: Verify correct device tree overlay for your RTC chip

docs/docs/modules/zimkey4.md

Lines changed: 0 additions & 2 deletions
This file was deleted.

0 commit comments

Comments
 (0)