Skip to content

G.mat got an asymmetric sparse matrix #51

@garyhsu29

Description

@garyhsu29

Hello! Thanks for the great great work!
I encountered an issue while using nodevectors to train the prone embeddings:
I ran
G = cg.read_edgelist("..", directed=True, sep=',')
g2v = ProNE()
g2v.fit(G)

and I got:

ValueError Traceback (most recent call last)
Input In [34], in <cell line: 2>()
1 g2v = ProNE()
----> 2 g2v.fit(G)

File ~/miniforge3/envs/alphaA/lib/python3.8/site-packages/nodevectors/prone.py:82, in ProNE.fit(self, graph)
78 G = cg.csrgraph(graph)
79 features_matrix = self.pre_factorization(G.mat,
80 self.n_components,
81 self.exponent)
---> 82 vectors = ProNE.chebyshev_gaussian(
83 G.mat, features_matrix, self.n_components,
84 step=self.step, mu=self.mu, theta=self.theta)
85 self.model = dict(zip(G.nodes(), vectors))

File ~/miniforge3/envs/alphaA/lib/python3.8/site-packages/nodevectors/prone.py:154, in ProNE.chebyshev_gaussian(G, a, n_components, step, mu, theta)
151 return a
152 print(G.shape)
--> 154 A = sparse.eye(nnodes) + G
155 DA = preprocessing.normalize(A, norm='l1')
156 # L is graph laplacian

File ~/miniforge3/envs/alphaA/lib/python3.8/site-packages/scipy/sparse/base.py:414, in spmatrix.add(self, other)
412 elif isspmatrix(other):
413 if other.shape != self.shape:
--> 414 raise ValueError("inconsistent shapes")
415 return self._add_sparse(other)
416 elif isdense(other):

ValueError: inconsistent shapes

I further check the error and it showed that the G.mat is an asymmetric sparse matrix with shape (830421x830420)
Could you please give me any clue on this?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions