|
| 1 | +from cool_seq_tool.schemas import AnnotationLayer |
| 2 | +from fastapi import APIRouter |
| 3 | + |
| 4 | +from dcd_mapping.align import align |
| 5 | +from dcd_mapping.annotate import ( |
| 6 | + _get_computed_reference_sequence, |
| 7 | + _get_mapped_reference_sequence, |
| 8 | + _set_scoreset_layer, |
| 9 | + annotate, |
| 10 | +) |
| 11 | +from dcd_mapping.mavedb_data import ( |
| 12 | + get_raw_scoreset_metadata, |
| 13 | + get_scoreset_metadata, |
| 14 | + get_scoreset_records, |
| 15 | +) |
| 16 | +from dcd_mapping.schemas import ScoreAnnotation, ScoresetMapping |
| 17 | +from dcd_mapping.transcripts import select_transcript |
| 18 | +from dcd_mapping.vrs_map import vrs_map |
| 19 | + |
| 20 | +router = APIRouter( |
| 21 | + prefix="/api/v1", tags=["mappings"], responses={404: {"description": "Not found"}} |
| 22 | +) |
| 23 | + |
| 24 | + |
| 25 | +@router.post(path="/map/{urn}", status_code=200, response_model=ScoresetMapping) |
| 26 | +async def map_scoreset(urn: str) -> ScoresetMapping: |
| 27 | + metadata = get_scoreset_metadata(urn) |
| 28 | + records = get_scoreset_records(urn, True) |
| 29 | + |
| 30 | + alignment_result = align(metadata, True) |
| 31 | + |
| 32 | + transcript = await select_transcript(metadata, records, alignment_result) |
| 33 | + |
| 34 | + vrs_results = vrs_map(metadata, alignment_result, records, transcript, True) |
| 35 | + |
| 36 | + # TODO raise server error if vrs_results is None |
| 37 | + if vrs_results is None: |
| 38 | + return None |
| 39 | + |
| 40 | + vrs_results = annotate(vrs_results, transcript, metadata) |
| 41 | + |
| 42 | + raw_metadata = get_raw_scoreset_metadata(urn) |
| 43 | + # TODO change vrs map back to always use only the preferred layer |
| 44 | + # preferred_layers = {mapping.annotation_layer for mapping in vrs_results} |
| 45 | + preferred_layers = { |
| 46 | + _set_scoreset_layer(urn, vrs_results), |
| 47 | + } |
| 48 | + |
| 49 | + reference_sequences = { |
| 50 | + layer: {"computed_reference_sequence": None, "mapped_reference_sequence": None} |
| 51 | + for layer in AnnotationLayer |
| 52 | + } |
| 53 | + |
| 54 | + for layer in preferred_layers: |
| 55 | + reference_sequences[layer][ |
| 56 | + "computed_reference_sequence" |
| 57 | + ] = _get_computed_reference_sequence(urn, layer, transcript) |
| 58 | + reference_sequences[layer][ |
| 59 | + "mapped_reference_sequence" |
| 60 | + ] = _get_mapped_reference_sequence(layer, transcript, alignment_result) |
| 61 | + |
| 62 | + mapped_scores: list[ScoreAnnotation] = [] |
| 63 | + for m in vrs_results: |
| 64 | + if m.annotation_layer in preferred_layers: |
| 65 | + # drop annotation layer from mapping object |
| 66 | + mapped_scores.append(ScoreAnnotation(**m.model_dump())) |
| 67 | + |
| 68 | + output = ScoresetMapping( |
| 69 | + metadata=raw_metadata, |
| 70 | + computed_protein_reference_sequence=reference_sequences[ |
| 71 | + AnnotationLayer.PROTEIN |
| 72 | + ]["computed_reference_sequence"], |
| 73 | + mapped_protein_reference_sequence=reference_sequences[AnnotationLayer.PROTEIN][ |
| 74 | + "mapped_reference_sequence" |
| 75 | + ], |
| 76 | + computed_genomic_reference_sequence=reference_sequences[ |
| 77 | + AnnotationLayer.GENOMIC |
| 78 | + ]["computed_reference_sequence"], |
| 79 | + mapped_genomic_reference_sequence=reference_sequences[AnnotationLayer.GENOMIC][ |
| 80 | + "mapped_reference_sequence" |
| 81 | + ], |
| 82 | + mapped_scores=mapped_scores, |
| 83 | + ) |
| 84 | + |
| 85 | + return output |
0 commit comments