|
| 1 | +""" |
| 2 | +Count unique variant effect measurements within ACMG-classified functional ranges. |
| 3 | +
|
| 4 | +This script analyzes MaveDB score sets to count how many variant effect measurements |
| 5 | +have functional scores that fall within score calibration ranges associated with |
| 6 | +ACMG (American College of Medical Genetics) classifications. The analysis provides |
| 7 | +insights into how many variants can be clinically interpreted using established |
| 8 | +evidence strength frameworks. |
| 9 | +
|
| 10 | +Usage: |
| 11 | + # Show help and available options |
| 12 | + with_mavedb_local poetry run python3 -m mavedb.scripts.effect_measurements --help |
| 13 | +
|
| 14 | + # Run in dry-run mode (default, no database changes, shows results) |
| 15 | + with_mavedb_local poetry run python3 -m mavedb.scripts.effect_measurements --dry-run |
| 16 | +
|
| 17 | + # Run and commit results (this script is read-only, so commit doesn't change anything) |
| 18 | + with_mavedb_local poetry run python3 -m mavedb.scripts.effect_measurements --commit |
| 19 | +
|
| 20 | +Behavior: |
| 21 | + 1. Queries all non-superseded score sets that have score calibrations |
| 22 | + 2. Identifies calibrations with functional ranges that have ACMG classifications |
| 23 | + 3. For each qualifying score set, queries its variants with non-null scores |
| 24 | + 4. Counts variants whose scores fall within ACMG-classified ranges |
| 25 | + 5. Reports statistics on classification coverage |
| 26 | +
|
| 27 | +Key Filters: |
| 28 | + - Excludes superseded score sets (where superseding_score_set is not None) |
| 29 | + - Only processes score sets that have at least one score calibration |
| 30 | + - Only considers functional ranges with ACMG classification data |
| 31 | + - Only counts variants that have non-null functional scores |
| 32 | + - Each variant is counted only once per score set, even if it matches multiple ranges |
| 33 | +
|
| 34 | +ACMG Classification Detection: |
| 35 | + A functional range is considered to have an ACMG classification if its |
| 36 | + acmg_classification field contains any of: |
| 37 | + - criterion (PS3, BS3, etc.) |
| 38 | + - evidence_strength (Supporting, Moderate, Strong, Very Strong) |
| 39 | + - points (numeric evidence points) |
| 40 | +
|
| 41 | +Performance Notes: |
| 42 | + - Uses optimized queries to avoid loading unnecessary data |
| 43 | + - Loads score sets and calibrations first, then queries variants separately |
| 44 | + - Filters variants at the database level for better performance |
| 45 | + - Memory usage scales with the number of score sets with ACMG ranges |
| 46 | +
|
| 47 | +Output: |
| 48 | + - Progress updates for each score set with classified variants |
| 49 | + - Summary statistics including: |
| 50 | + * Number of score sets with ACMG classifications |
| 51 | + * Total unique variants processed |
| 52 | + * Number of variants within ACMG-classified ranges |
| 53 | + * Overall classification rate percentage |
| 54 | +
|
| 55 | +Caveats: |
| 56 | + - This is a read-only analysis script (makes no database changes) |
| 57 | + - Variants with null/missing scores are included in the analysis |
| 58 | +""" |
| 59 | + |
| 60 | +import logging |
| 61 | +from typing import Set |
| 62 | + |
| 63 | +import click |
| 64 | +from sqlalchemy import select |
| 65 | +from sqlalchemy.orm import Session, joinedload |
| 66 | + |
| 67 | +from mavedb.models.score_set import ScoreSet |
| 68 | +from mavedb.scripts.environment import with_database_session |
| 69 | +from mavedb.view_models.score_calibration import FunctionalRange |
| 70 | + |
| 71 | +logger = logging.getLogger(__name__) |
| 72 | + |
| 73 | + |
| 74 | +def score_falls_within_range(score: float, functional_range: dict) -> bool: |
| 75 | + """Check if a score falls within a functional range using the view model.""" |
| 76 | + try: |
| 77 | + range_obj = FunctionalRange.model_validate(functional_range) |
| 78 | + return range_obj.is_contained_by_range(score) |
| 79 | + except Exception as e: |
| 80 | + logger.warning(f"Error validating functional range: {e}") |
| 81 | + return False |
| 82 | + |
| 83 | + |
| 84 | +def has_acmg_classification(functional_range: dict) -> bool: |
| 85 | + """Check if a functional range has an ACMG classification.""" |
| 86 | + acmg_data = functional_range.get("acmg_classification") |
| 87 | + return acmg_data is not None and ( |
| 88 | + acmg_data.get("criterion") is not None |
| 89 | + or acmg_data.get("evidence_strength") is not None |
| 90 | + or acmg_data.get("points") is not None |
| 91 | + ) |
| 92 | + |
| 93 | + |
| 94 | +@click.command() |
| 95 | +@with_database_session |
| 96 | +def main(db: Session) -> None: |
| 97 | + """Count unique variant effect measurements with ACMG-classified functional ranges.""" |
| 98 | + |
| 99 | + query = ( |
| 100 | + select(ScoreSet) |
| 101 | + .options(joinedload(ScoreSet.score_calibrations)) |
| 102 | + .where(ScoreSet.private.is_(False)) # Public score sets only |
| 103 | + .where(ScoreSet.superseded_score_set_id.is_(None)) # Not superseded |
| 104 | + .where(ScoreSet.score_calibrations.any()) # Has calibrations |
| 105 | + ) |
| 106 | + |
| 107 | + score_sets = db.scalars(query).unique().all() |
| 108 | + |
| 109 | + total_variants = 0 |
| 110 | + classified_variants = 0 |
| 111 | + score_sets_with_acmg = 0 |
| 112 | + processed_variants: Set[int] = set() |
| 113 | + gene_list: Set[str] = set() |
| 114 | + |
| 115 | + click.echo(f"Found {len(score_sets)} non-superseded score sets with calibrations") |
| 116 | + |
| 117 | + for score_set in score_sets: |
| 118 | + # Collect all ACMG-classified ranges from this score set's calibrations |
| 119 | + acmg_ranges = [] |
| 120 | + for calibration in score_set.score_calibrations: |
| 121 | + if calibration.functional_ranges: |
| 122 | + for func_range in calibration.functional_ranges: |
| 123 | + if has_acmg_classification(func_range): |
| 124 | + acmg_ranges.append(func_range) |
| 125 | + |
| 126 | + if not acmg_ranges: |
| 127 | + continue |
| 128 | + |
| 129 | + score_sets_with_acmg += 1 |
| 130 | + score_set_classified_variants = 0 |
| 131 | + |
| 132 | + # Retain a list of unique target genes for reporting |
| 133 | + for target in score_set.target_genes: |
| 134 | + target_name = target.name |
| 135 | + if not target_name: |
| 136 | + continue |
| 137 | + |
| 138 | + gene_list.add(target_name.strip().upper()) |
| 139 | + |
| 140 | + for variant in score_set.variants: |
| 141 | + if variant.id in processed_variants: |
| 142 | + continue |
| 143 | + |
| 144 | + variant_data = variant.data |
| 145 | + if not variant_data: |
| 146 | + continue |
| 147 | + |
| 148 | + score_data = variant_data.get("score_data", {}) |
| 149 | + score = score_data.get("score") |
| 150 | + |
| 151 | + total_variants += 1 |
| 152 | + processed_variants.add(variant.id) # type: ignore |
| 153 | + |
| 154 | + if score is None: |
| 155 | + continue |
| 156 | + |
| 157 | + # Check if score falls within any ACMG-classified range in this score set |
| 158 | + for func_range in acmg_ranges: |
| 159 | + if score_falls_within_range(float(score), func_range): |
| 160 | + classified_variants += 1 |
| 161 | + score_set_classified_variants += 1 |
| 162 | + break # Count variant only once per score set |
| 163 | + |
| 164 | + if score_set_classified_variants > 0: |
| 165 | + click.echo( |
| 166 | + f"Score set {score_set.urn}: {score_set_classified_variants} classified variants ({score_set.num_variants} total variants)" |
| 167 | + ) |
| 168 | + |
| 169 | + click.echo("\n" + "=" * 60) |
| 170 | + click.echo("SUMMARY") |
| 171 | + click.echo("=" * 60) |
| 172 | + click.echo(f"Score sets with ACMG classifications: {score_sets_with_acmg}") |
| 173 | + click.echo(f"Total unique variants processed: {total_variants}") |
| 174 | + click.echo(f"Variants within ACMG-classified ranges: {classified_variants}") |
| 175 | + click.echo(f"Unique target genes covered ({len(gene_list)}):") |
| 176 | + for gene in sorted(gene_list): |
| 177 | + click.echo(f" - {gene}") |
| 178 | + |
| 179 | + if total_variants > 0: |
| 180 | + percentage = (classified_variants / total_variants) * 100 |
| 181 | + click.echo(f"Classification rate: {percentage:.1f}%") |
| 182 | + |
| 183 | + |
| 184 | +if __name__ == "__main__": # pragma: no cover |
| 185 | + main() |
0 commit comments