|
16 | 16 | | [Prompt Engineering][pe-repo] | This repository contains demos for a variety of Prompt Engineering techniques such as fairness measurement via sentiment analysis, finetuning, prompt tuning, prompt ensembling etc. | Bias Quantification & Probing, Stereotypical Bias Analysis, Binary sentiment analysis task, Finetuning using HF Library, Gradient-Search for Instruction Prefix, GRIPS for Instruction Prefix, LLM Summarization, LLM Classification: AG News task, LLM BoolQ (Boolean question answering), LLM Basic Translation (French -> English), LLM Aspect-Based Sentiment Analysis, prompt-tuning, Activation Computation, LLM Classifier Training, Voting and Averaging Ensembles | 10 | [Crow-pairs], [sst5], [cnn_dailymail], [ag_news], [Tweet-data], [Other] | |
17 | 17 | | [ABSA][absa-repo] | This repository contains code for the paper [Open Aspect Target Sentiment Classification with Natural Language Prompts][absa-paper]. <br> Authors are Ronald Seoh, Ian Birle, Mrinal Tak, Haw-Shiuan Chang, Brian Pinette, Alfred Hough. | Zero-shot inference for sentiment using PLM and openprompt, Few-shot inference for sentiment using PLM, Zero-shot ATSC with Prompts using BERT and OPT, Zero-shot inference of aspect term and generate sentiment polarity using NLTK pipeline | 4 | [Link][Link-absa] | |
18 | 18 | | [NAA][naa-repo] | This repository contains code for the paper [Bringing the State-of-the-Art to Customers: A Neural Agent Assistant Framework for Customer Service Support].[naa-paper] Authors are Stephen Obadinma, Faiza Khan Khattak, Shirley Wang, Tania Sidhorn, Elaine Lau, Sean Robertson, Jingcheng Niu, Winnie Au, Alif Munim, Karthik Raja Kalaiselvi Bhaskar. | Context Retreival using SBERT bi-encoder, Context Retreival using SBERT cross-encoder, Intent identification using BERT, Few Shot Multi-Class Text Classification with BERT, Multi-Class Text Classification with BERT, Reponse generation via GPT2. | 5 | [ELI5], [MSMARCO] | |
| 19 | +| [Anomaly Detection Project][anomaly-repo] | This repository contains demos for various supervised and unsupervised anomaly detection techniques in domains such as Fraud Detection, Network Intrusion Detection, System Monitoring and image, Video Analysis. | AMNet, GCN, SAGE, OCGNN, DON, AdONE, MLP, FTTransformter, DeepSAD, XGBoost, CBLOF, CFA for Target-Oriented Anomaly Localization, Draem for surface anomaly detection, Logistic Regression, CATBoost, Random Forest, Diversity Measurable Anomaly Detection, Two-stream I3D Convolutional Network, DeepCNN, CatBoost, LighGBM, Isolation Forest, TabNet, AutoEncoder, Internal Contrastive Learning | 5 | [On Vector Cluster][cluster-anomaly] | |
| 20 | +| [SSL Bootcamp][ssl-repo] | This repository contains demos for self-supervised techniques such as contrastive learning, masked modeling and self distillation. | Internal Contrastive Learning, LatentOD-AD, TabRet,SimMTM, Data2Vec | 52 | [Beijing Air Quality][baq-ssl], [BRFSS][brfss-ssl], [Stroke Prediction][stroke-ssl], [STL10][stl-10-ssl], [Link1][Link1-ssl], [Link2][Link2-ssl] |
| 21 | +| [Causal Inference Lab][ci-lab-repo] | This repository contains code to estimate the causal effects of an intervention on some measurable outcome primarily in the health domain. | Naive ATE, TARNet, DragonNet, Double Machine Learning, T Learner, S Learner, Inverse Propensity based Learner, PEHE, MAE; Evaluation metrics: R Score, DR Score, Tau Risk, Tau IPTW Score, Tau DR Score, Tau S Score, Tau T Risk, Influence Score | 5 | [Infant Health and Development Program][IHDP], <br> [Jobs], [Twins], <br> [Berkeley admission], <br> [Government Census], [Compas] | |
| 22 | +| [VariationalNeuralAnnealing][vna-repo] | This repository contains code for the paper [Variational neural annealing][vna-paper]. Authors are Mohamed Hibat-Allah, Estelle M. Inack, Roeland Wiersema, Roger G. Melko & Juan Carrasquilla. | Variational neural annealing; Variational Classical Annealing (VCA), Variational Quantum Annealing, Regularized VQA, Classical-Quantum Optimization | 2 | [Edwards-Anderson][EA], [Sherrington-Kirkpatrick][SK] | |
19 | 23 | -------- |
20 | 24 |
|
21 | 25 | [//]: # (Reference links for Github repositories) |
|
32 | 36 | [fastgan-repo]: https://github.com/VectorInstitute/FastGAN-pytorch |
33 | 37 | [absa-repo]: https://github.com/VectorInstitute/ABSA |
34 | 38 | [naa-repo]: https://github.com/VectorInstitute/NAA |
| 39 | +[anomaly-repo]: https://github.com/VectorInstitute/anomaly-detection-project |
| 40 | +[ssl-repo]: https://github.com/VectorInstitute/SSL-Bootcamp |
| 41 | +[ci-lab-repo]: https://github.com/VectorInstitute/Causal_Inference_Laboratory |
| 42 | +[vna-repo]: https://github.com/VectorInstitute/VariationalNeuralAnnealing |
| 43 | +[covid-repo]: https://github.com/VectorInstitute/ProjectLongCovid-NER |
| 44 | +[hvaic-repo]: https://github.com/VectorInstitute/HV-Ai-C |
| 45 | +[flex-model-repo]: https://github.com/VectorInstitute/flex_model |
| 46 | +[vbll-repo]: https://github.com/VectorInstitute/vbll |
35 | 47 |
|
36 | 48 | [//]: # (Reference links for Research papers) |
37 | 49 | [laftr-paper]: https://arxiv.org/abs/1802.06309 |
|
40 | 52 | [nkb-paper]: https://arxiv.org/abs/2111.03543 |
41 | 53 | [fpf-paper]: https://www.dal.ca/sites/agri-food/research/canada-s-food-price-report-2022.html |
42 | 54 | [absa-paper]: https://aclanthology.org/2021.emnlp-main.509/ |
| 55 | +[vna-paper]: https://www.nature.com/articles/s42256-021-00401-3 |
43 | 56 |
|
44 | 57 | [//]: # (Reference links for datasets) |
45 | 58 | [CIFAR10]: https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.html#torchvision.datasets.CIFAR10 |
|
90 | 103 | [ag_news]: https://huggingface.co/datasets/fancyzhx/ag_news |
91 | 104 | [Tweet-data]: https://github.com/VectorInstitute/PromptEngineering/tree/main/resources/datasets |
92 | 105 | [Other]: https://github.com/VectorInstitute/PromptEngineering/tree/main/src/reference_implementations/prompting_vector_llms/llm_prompting_examples/resources |
93 | | - |
94 | | - |
95 | 106 | [Few shot images dataset]: https://drive.google.com/file/d/1aAJCZbXNHyraJ6Mi13dSbe7pTyfPXha0/view |
96 | 107 | [Link-absa]: https://github.com/VectorInstitute/ABSA/tree/main/atsc_paper/atsc_prompts_modified/dataset_files |
97 | 108 | [ELI5]: https://drive.google.com/drive/folders/1PDBiij-6JSxOtplOSc0hPTk9zL9n3qR6 |
98 | 109 | [MSMARCO]: https://drive.google.com/drive/folders/1LO3OtuDC_FSFktTgb2NfjPY2cse7WcTY |
99 | | - |
| 110 | +[cluster-anomaly]: https://github.com/VectorInstitute/anomaly-detection-project/tree/main?tab=readme-ov-file#datasets |
| 111 | +[baq-ssl]: https://zenodo.org/records/3902671 |
| 112 | +[brfss-ssl]: https://www.cdc.gov/brfss/ |
| 113 | +[stroke-ssl]: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset |
| 114 | +[stl-10-ssl]: https://cs.stanford.edu/~acoates/stl10/ |
| 115 | +[Link1-ssl]: https://github.com/VectorInstitute/SSL-Bootcamp/tree/main/contrastive_learning/ICL/datasets/Classical |
| 116 | +[Link2-ssl]: https://github.com/VectorInstitute/SSL-Bootcamp/tree/main/contrastive_learning/LatentOE/DATA |
| 117 | +[IHDP]: https://github.com/VectorInstitute/Causal_Inference_Laboratory/tree/main/data/IHDP-100 |
| 118 | +[Jobs]: https://github.com/VectorInstitute/Causal_Inference_Laboratory/tree/main/data/Jobs |
| 119 | +[Twins]: https://github.com/VectorInstitute/Causal_Inference_Laboratory/tree/main/data/TWINS |
| 120 | +[Berkeley admission]: https://github.com/VectorInstitute/Causal_Inference_Laboratory/tree/main/data/CFA |
| 121 | +[Government Census]: https://github.com/VectorInstitute/Causal_Inference_Laboratory/tree/main/data/CFA |
| 122 | +[Compas]: https://github.com/VectorInstitute/Causal_Inference_Laboratory/tree/main/data/CFA |
| 123 | +[EA]: https://github.com/VectorInstitute/VariationalNeuralAnnealing/tree/main/data/EA |
| 124 | +[SK]: https://github.com/VectorInstitute/VariationalNeuralAnnealing/tree/main/data/SK |
0 commit comments