Skip to content

Commit c18d939

Browse files
committed
make more redable.
1 parent 4bc23b3 commit c18d939

File tree

1 file changed

+12
-5
lines changed

1 file changed

+12
-5
lines changed

src/midst_toolkit/evaluation/privacy/batched_eir.py

Lines changed: 12 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,8 @@ def evaluate(self) -> dict:
118118
weights = [_column_entropy(np_real_data[:, feauture]) for feauture in range(n_feautures)]
119119
weights_adjusted = 1 / (np.array(weights) + 1e-16)
120120

121-
# INTERNAL KNN: REAL → REAL
121+
# internal (original syntheval logic)
122+
# hardcoding of k=1 refers to only needing to compute the distance to the closest neighbor.
122123
internal_distances = _knn_distance(
123124
self.real_data,
124125
self.real_data,
@@ -128,7 +129,7 @@ def evaluate(self) -> dict:
128129
weights_adjusted,
129130
)[0]
130131

131-
# EXTERNAL KNN: REAL → SYNTHETIC (safe to batch reference)
132+
# external (batched)
132133
external_distances = batched_reference_knn(
133134
self.real_data,
134135
self.synt_data,
@@ -142,12 +143,18 @@ def evaluate(self) -> dict:
142143
self.results["eps_risk"] = identifiability_risk
143144

144145
if self.hout_data is not None:
145-
# INTERNAL: HOUT → HOUT (original logic)
146+
# internal (original syntheval logic)
147+
# hardcoding of k=1 refers to only needing to compute the distance to the closest neighbor.
146148
hout_internal_distances = _knn_distance(
147-
self.hout_data, self.hout_data, self.cat_cols, 1, self.nn_dist, weights_adjusted
149+
self.hout_data,
150+
self.hout_data,
151+
self.cat_cols,
152+
1,
153+
self.nn_dist,
154+
weights_adjusted
148155
)[0]
149156

150-
# EXTERNAL: HOUT → SYNTHETIC (batched)
157+
# external (batched)
151158
hout_external_distances = batched_reference_knn(
152159
self.hout_data,
153160
self.synt_data,

0 commit comments

Comments
 (0)