|
| 1 | +--- |
| 2 | +title: Python/ScalaPy ⚡️ |
| 3 | +sidebar_position: 70 |
| 4 | +--- |
| 5 | + |
| 6 | +:::caution |
| 7 | +ScalaPy support is an experimental feature. |
| 8 | + |
| 9 | +Please bear in mind that non-ideal user experience should be expected. |
| 10 | +If you encounter any bugs or have feedback to share, make sure to reach out to the maintenance team |
| 11 | +on [GitHub](https://github.com/VirtusLab/scala-cli). |
| 12 | +::: |
| 13 | + |
| 14 | +ScalaPy is a library that allows you to access the Python interpreter from Scala code. It boasts a simple API, automatic conversion between Scala and Python types, and optional static typing. |
| 15 | +It makes it possible to integrate Python libraries into Scala CLI projects. |
| 16 | + |
| 17 | +Scala CLI allows to configure the ScalaPy library with the `--python` flag and `//> using python` directive. |
| 18 | + |
| 19 | +More information about ScalaPy can be found [here](https://scalapy.dev). |
| 20 | + |
| 21 | +## Example usage |
| 22 | + |
| 23 | +Some configuration might be needed before running the examples below: |
| 24 | + |
| 25 | +```bash ignore |
| 26 | +# install Python 3.11 (e.g. via an installer from the official Python website) |
| 27 | +# then download the packages with |
| 28 | +pip3 install numpy matplotlib python-config |
| 29 | +``` |
| 30 | + |
| 31 | +```scala |
| 32 | +//> using python |
| 33 | +//> using scala 2.13 |
| 34 | + |
| 35 | +import me.shadaj.scalapy.py |
| 36 | +import me.shadaj.scalapy.py.SeqConverters |
| 37 | +import py.PyQuote |
| 38 | + |
| 39 | +py.local { |
| 40 | + val np = py.module("numpy") |
| 41 | + |
| 42 | + val rng = np.random.default_rng() |
| 43 | + |
| 44 | + val randoms = rng.standard_normal(10).as[Seq[Double]] |
| 45 | + |
| 46 | + randoms.foreach(println(_)) |
| 47 | +} |
| 48 | + |
| 49 | +val numbers = py"[x * 2 for x in ${Iterator.from(3).take(10).toList.toPythonCopy}]" |
| 50 | + .as[Seq[Int]] |
| 51 | + |
| 52 | +println(numbers) |
| 53 | +``` |
| 54 | + |
| 55 | +You can also use Scala Native to create a native binary with direct bindings to CPython. |
| 56 | + |
| 57 | +```scala |
| 58 | +//> using python |
| 59 | + |
| 60 | +import me.shadaj.scalapy.py |
| 61 | +import me.shadaj.scalapy.py.SeqConverters |
| 62 | + |
| 63 | +import scala.util.Random |
| 64 | +import scala.math.{Pi, sin, random} |
| 65 | + |
| 66 | +object PlotDemo { |
| 67 | + @main |
| 68 | + def plot = { |
| 69 | + val sequences = generate3DataSeqs |
| 70 | + |
| 71 | + py.local { |
| 72 | + val plt = py.module("matplotlib.pyplot") |
| 73 | + |
| 74 | + for { |
| 75 | + (seq, color) <- sequences.zip(Seq("b", "r", "g")) |
| 76 | + } { |
| 77 | + plt.plot(seq.toPythonProxy, color = color) |
| 78 | + plt.show() |
| 79 | + } |
| 80 | + } |
| 81 | + } |
| 82 | + |
| 83 | + def generate3DataSeqs: Seq[Seq[Double]] = { |
| 84 | + val amplitude = 1.0 // Amplitude of the sine wave |
| 85 | + val numSamples = 1000 |
| 86 | + val numSequences = 3 |
| 87 | + val noiseAmplitude = 0.2 // Amplitude of noise |
| 88 | + |
| 89 | + // Generate three sequences with varying numbers of cycles |
| 90 | + val sequences = (1 to numSequences).map { seqIdx => |
| 91 | + val frequency = seqIdx // Varying frequency for each sequence |
| 92 | + (1 to numSamples).map { sampleIdx => |
| 93 | + val noise = (random * 2 - 1) * noiseAmplitude // Generate random noise |
| 94 | + val phase = 2 * Pi * frequency * sampleIdx / numSamples |
| 95 | + amplitude * sin(phase) + noise |
| 96 | + } |
| 97 | + } |
| 98 | + sequences |
| 99 | + } |
| 100 | +} |
| 101 | + |
| 102 | +``` |
| 103 | +Run: |
| 104 | +```bash ignore |
| 105 | +scala-cli --power package --native PlotDemo.scala -o plot |
| 106 | +./plot |
| 107 | +``` |
| 108 | + |
0 commit comments