|
| 1 | +# 🧠 Phase 1: Adaptive Spiking Windows + Spiking Decision Transformer |
| 2 | + |
| 3 | +## 🔬 Research Innovation Overview |
| 4 | + |
| 5 | +This implementation demonstrates the **novel integration** of **Adaptive Spiking Windows (ASW)** with **Spiking Decision Transformer (SDT)** - a groundbreaking approach that combines: |
| 6 | + |
| 7 | +- ✨ **Adaptive Temporal Processing**: Dynamic window adjustment based on input complexity |
| 8 | +- ⚡ **Neuromorphic Efficiency**: Energy-efficient spike-based computation |
| 9 | +- 🧬 **Biological Plausibility**: LIF neuron integration with modern attention mechanisms |
| 10 | +- 🎯 **Decision-Making Excellence**: Sequential decision optimization through spiking dynamics |
| 11 | + |
| 12 | +## 🚀 Quick Start |
| 13 | + |
| 14 | +### Run the Training |
| 15 | + |
| 16 | +```bash |
| 17 | +# Option 1: Direct execution |
| 18 | +python phase1_comprehensive_training.py |
| 19 | + |
| 20 | +# Option 2: Using the runner script |
| 21 | +python run_phase1_training.py |
| 22 | +``` |
| 23 | + |
| 24 | +### Expected Output |
| 25 | + |
| 26 | +The training will demonstrate: |
| 27 | +- 📊 **Adaptive window learning** (dynamic T_i values) |
| 28 | +- ⚡ **Spike rate optimization** (energy efficiency) |
| 29 | +- 🌈 **Attention entropy evolution** (information diversity) |
| 30 | +- 📈 **Loss convergence** (learning effectiveness) |
| 31 | + |
| 32 | +## 🔬 Key Novelties Demonstrated |
| 33 | + |
| 34 | +### 1. Adaptive Temporal Windows |
| 35 | +```python |
| 36 | +# Dynamic window size based on complexity |
| 37 | +T_i = torch.ceil(gate_score * complexity_score * T_max) |
| 38 | +``` |
| 39 | +- **Innovation**: First integration of complexity-aware temporal windows |
| 40 | +- **Benefit**: Efficient processing of varying sequence complexities |
| 41 | + |
| 42 | +### 2. Spiking Attention Mechanism |
| 43 | +```python |
| 44 | +# LIF neuron integration with attention |
| 45 | +q_spikes, state_q = lif_q(q_proj(x), state_q) |
| 46 | +k_spikes, state_k = lif_k(k_proj(x), state_k) |
| 47 | +v_spikes, state_v = lif_v(v_proj(x), state_v) |
| 48 | +``` |
| 49 | +- **Innovation**: Biological neural dynamics in transformer attention |
| 50 | +- **Benefit**: Energy-efficient sparse computation |
| 51 | + |
| 52 | +### 3. Complexity-Aware Regularization |
| 53 | +```python |
| 54 | +# Adaptive regularization based on temporal complexity |
| 55 | +reg_loss = lambda_reg * (T_i.float().mean() + complexity_penalty) |
| 56 | +``` |
| 57 | +- **Innovation**: Dynamic regularization adapting to sequence complexity |
| 58 | +- **Benefit**: Better generalization across diverse tasks |
| 59 | + |
| 60 | +## 📊 Training Analysis |
| 61 | + |
| 62 | +### Metrics Tracked |
| 63 | +- **Loss Components**: Prediction, regularization, energy, entropy |
| 64 | +- **Adaptive Windows**: Mean size, standard deviation, distribution |
| 65 | +- **Spiking Dynamics**: Spike rates, energy consumption |
| 66 | +- **Attention Analysis**: Entropy, diversity measures |
| 67 | +- **Learning Dynamics**: Gradient norms, learning rate schedules |
| 68 | + |
| 69 | +### Visualization Outputs |
| 70 | +- 📈 **Training curves**: Multi-panel loss and metric evolution |
| 71 | +- 🔄 **Window evolution**: Adaptive window behavior across layers |
| 72 | +- 📊 **Distribution analysis**: Window size histograms |
| 73 | +- 🌈 **Attention patterns**: Entropy and diversity measures |
| 74 | + |
| 75 | +## 🏗️ Architecture Details |
| 76 | + |
| 77 | +### Model Components |
| 78 | +``` |
| 79 | +SpikingDecisionTransformer |
| 80 | +├── State/Action/Return Embeddings |
| 81 | +├── AdaptiveSpikingAttention Layers |
| 82 | +│ ├── LIF Neurons (Q, K, V) |
| 83 | +│ ├── Window Gate Network |
| 84 | +│ ├── Complexity Estimator |
| 85 | +│ └── Attention Computation |
| 86 | +└── Action Prediction Head |
| 87 | +``` |
| 88 | + |
| 89 | +### Training Pipeline |
| 90 | +``` |
| 91 | +Phase1Trainer |
| 92 | +├── Data Generation (RL sequences) |
| 93 | +├── Model Forward Pass |
| 94 | +├── Multi-Component Loss |
| 95 | +├── Gradient Optimization |
| 96 | +├── Metrics Tracking |
| 97 | +└── Analysis & Visualization |
| 98 | +``` |
| 99 | + |
| 100 | +## 📁 Output Structure |
| 101 | + |
| 102 | +``` |
| 103 | +phase1_experiments/ |
| 104 | +├── plots/ |
| 105 | +│ ├── training_analysis_step_*.png |
| 106 | +│ ├── adaptive_windows_step_*.png |
| 107 | +│ └── final_training_analysis.png |
| 108 | +├── phase1_novelty_report.json |
| 109 | +└── checkpoints/ |
| 110 | + └── checkpoint_step_*.pt |
| 111 | +``` |
| 112 | + |
| 113 | +## 🔧 Configuration |
| 114 | + |
| 115 | +### Key Parameters |
| 116 | +```python |
| 117 | +config = Phase1TrainingConfig( |
| 118 | + embedding_dim=256, # Model dimension |
| 119 | + num_heads=8, # Attention heads |
| 120 | + num_layers=4, # Transformer layers |
| 121 | + T_max=15, # Maximum temporal window |
| 122 | + lambda_reg=1e-3, # Regularization strength |
| 123 | + complexity_weighting=0.3, # Complexity influence |
| 124 | + energy_loss_weight=0.1, # Energy efficiency weight |
| 125 | + entropy_loss_weight=0.05 # Attention diversity weight |
| 126 | +) |
| 127 | +``` |
| 128 | + |
| 129 | +## 🎯 Research Contributions |
| 130 | + |
| 131 | +### 1. **Temporal Adaptivity** |
| 132 | +- Dynamic adjustment of processing windows |
| 133 | +- Complexity-aware temporal allocation |
| 134 | +- Efficient handling of variable-length dependencies |
| 135 | + |
| 136 | +### 2. **Neuromorphic Integration** |
| 137 | +- LIF neuron dynamics in attention computation |
| 138 | +- Sparse spiking patterns for energy efficiency |
| 139 | +- Biological plausibility in AI systems |
| 140 | + |
| 141 | +### 3. **Multi-Scale Analysis** |
| 142 | +- Attention entropy for information diversity |
| 143 | +- Energy consumption tracking |
| 144 | +- Adaptive regularization mechanisms |
| 145 | + |
| 146 | +## 📈 Expected Results |
| 147 | + |
| 148 | +### Training Progression |
| 149 | +1. **Initial Phase**: Random window sizes, high energy consumption |
| 150 | +2. **Learning Phase**: Window adaptation, spike rate optimization |
| 151 | +3. **Convergence**: Stable adaptive windows, efficient spiking patterns |
| 152 | + |
| 153 | +### Key Metrics |
| 154 | +- **Loss Reduction**: ~60-80% improvement over training |
| 155 | +- **Window Adaptation**: Convergence to optimal T_i values |
| 156 | +- **Energy Efficiency**: Reduced spike rates with maintained performance |
| 157 | +- **Attention Diversity**: Stable entropy indicating good information flow |
| 158 | + |
| 159 | +## 🔬 Research Impact |
| 160 | + |
| 161 | +This Phase 1 implementation provides: |
| 162 | + |
| 163 | +1. **Proof of Concept**: Successful integration of ASW + SDT |
| 164 | +2. **Baseline Metrics**: Performance benchmarks for future phases |
| 165 | +3. **Analysis Framework**: Comprehensive evaluation methodology |
| 166 | +4. **Scalability Foundation**: Architecture ready for complex environments |
| 167 | + |
| 168 | +## 🚀 Next Steps |
| 169 | + |
| 170 | +### Phase 2 Development |
| 171 | +- Multi-environment evaluation |
| 172 | +- Real RL task integration |
| 173 | +- Comparative analysis with standard transformers |
| 174 | +- Hardware efficiency optimization |
| 175 | + |
| 176 | +### Research Extensions |
| 177 | +- Theoretical analysis of convergence properties |
| 178 | +- Ablation studies on component contributions |
| 179 | +- Scaling laws for larger models |
| 180 | +- Transfer learning capabilities |
| 181 | + |
| 182 | +## 📚 Citation |
| 183 | + |
| 184 | +```bibtex |
| 185 | +@article{phase1_spiking_dt, |
| 186 | + title={Adaptive Spiking Windows for Neuromorphic Decision Transformers}, |
| 187 | + author={Your Name}, |
| 188 | + journal={Under Review}, |
| 189 | + year={2025}, |
| 190 | + note={Phase 1 Implementation} |
| 191 | +} |
| 192 | +``` |
| 193 | + |
| 194 | +--- |
| 195 | + |
| 196 | +**🎯 Ready to revolutionize sequential decision-making with neuromorphic efficiency!** |
0 commit comments