773 . [ Necessary Installations] ( #necessary-installations ) 🛠️
884 . [ Train Pipeline] ( #train-pipeline ) 🚂
995 . [ Continuous Integration Pipeline] ( #continuous-integration-pipeline ) 🔁
10- 6 . [ Email Report ] ( #email-report ) 📧
10+ 6 . [ Alert Reports ] ( #email-report ) 📧
11117 . [ Prediction App] ( #prediction-app ) 🎯
12128 . [ Neptune.ai Dashboard] ( #neptune.ai-dashboard ) 🌊
13139 . [ Docker Configuration] ( #docker-configuration ) 🐳
@@ -138,7 +138,7 @@ This pipeline is crucial for maintaining a continuous and reliable deployment pr
138138
139139
140140
141- ## Email Reports 📧
141+ ## Alert Reports 📧
142142
143143In our project, email reports are a vital part of the pipeline to notify users when certain tests fail. These reports are triggered by specific conditions during the pipeline execution. Here' s how it works:
144144
@@ -161,6 +161,16 @@ This notification system helps ensure the integrity and reliability of the data
161161! [Data Drift e-mail report](assets/data_Drift_email.PNG)
162162! [Model Performance e-mail report](assets/model_performace_email.PNG)
163163
164+ We also send failed alert reports via Discord and Slack platforms.
165+
166+ Discord: [# failed-alerts](https://discord.gg/bxZx6EGVMD)
167+
168+ ! [Discord Alert:](assets/alerts-discord.PNG)
169+
170+ Slack: [# sales-conversion-test-failures](https://join.slack.com/t/vishalsworkspaceco/shared_invite/zt-2b00eaite-KHPsBmlsM2JtsmR2oN0qrQ)
171+
172+ ! [Slack Alert:](assets/slack-alerter.PNG)
173+
164174
165175# Prediction App 🚀
166176
@@ -169,7 +179,6 @@ To run the streamlit application,
169179 ` ` ` bash
170180 streamlit run app.py
171181 ` ` `
172- ! [Streamlit Prediction App](assets/streamlit-prediction-app.PNG)
173182
174183# # Functionality:
175184- 🌐 ** Streamlit Application** : User-friendly interface for predictions and monitoring.
@@ -186,11 +195,19 @@ This app streamlines the process of making predictions, interpreting model outpu
186195- Predict button generates approved conversion predictions.
187196- 🔗 [Neptune.ai Metrics](https://app.neptune.ai/Vishal-Kumar-S/Sales-Conversion-Optimisation-MLOps-Project)
188197
198+ ! [Streamlit Prediction App](assets/streamlit-prediction-app.PNG)
199+
200+
189201# # Interpretability Section
190202- 📝 ** Detailed Interpretability Report** : View global interpretability metrics.
191203- 🌐 ** SHAP Global Plot** : Explore SHAP values at a global level.
192204- 🌍 ** SHAP Local Plot** : Visualize SHAP values for user-input data.
193205
206+ ! [SHAP Report:](assets/shap_local_plot.PNG)
207+
208+ ! [LIME Report:](assets/local_plot.PNG)
209+
210+
194211# # Data and Model Reports
195212- 📉 ** Data Quality Report** : Assess data quality between reference and current data.
196213- 📊 ** Data Drift Report** : Identify drift in data distribution.
@@ -201,12 +218,46 @@ This app streamlines the process of making predictions, interpreting model outpu
201218- Check options to generate specific reports.
202219- Click ' Submit' to view generated reports.
203220
221+ .PNG
222+ )
223+
224+ .PNG)
225+
226+
227+
204228## Test Your Batch Data
2052291. 📂 **Dataset Upload**: Upload your batch dataset for validation.
2062302. 📧 **Email Alerts**: Provide an email for failure alerts.
2072313. 🔄 **Data Validation Progress**: 67 tests to ensure data quality.
2082324. 📊 **Visualizations**: Scatter plot and residuals plot for validation results.
209233
234+
235+ ##### Step 1: Upload Your Batch Dataset
236+
237+ 
238+
239+ 
240+
241+ ##### Step 2: Provide Email Address for Alerts
242+
243+ 
244+
245+ ##### Step 3: Data Validation Progress
246+
247+ Successful tests validation:
248+
249+ 
250+
251+ 
252+
253+ 
254+
255+
256+ Failed tests validation:
257+ 
258+
259+
260+
210261For more details, check the respective sections in the Streamlit app.
211262
212263This application provides an intuitive interface for users to make predictions and monitoring effortlessly. 📊✨ Explore the power of data-driven insights with ease and confidence! 🚀🔍
0 commit comments