|
| 1 | +_base_ = [ |
| 2 | + 'mmrotate::_base_/datasets/visdronezsd.py', |
| 3 | + 'mmrotate::_base_/default_runtime.py' |
| 4 | +] |
| 5 | +angle_version = 'le90' |
| 6 | +lang_model_name = 'bert-base-uncased' |
| 7 | +batch_size = 8 |
| 8 | +num_workers = 2 |
| 9 | + |
| 10 | +custom_imports = dict( |
| 11 | + imports=['projects.GLIP.glip'], allow_failed_imports=False) |
| 12 | + |
| 13 | + |
| 14 | +model = dict( |
| 15 | + type='mmdet.GLIP', |
| 16 | + data_preprocessor=dict( |
| 17 | + type='mmdet.DetDataPreprocessor', |
| 18 | + mean=[103.53, 116.28, 123.675], |
| 19 | + std=[57.375, 57.12, 58.395], |
| 20 | + bgr_to_rgb=False, |
| 21 | + pad_size_divisor=32, |
| 22 | + boxtype2tensor=False), |
| 23 | + backbone=dict( |
| 24 | + type='mmdet.ResNet', |
| 25 | + depth=50, |
| 26 | + num_stages=4, |
| 27 | + out_indices=(1, 2, 3), |
| 28 | + frozen_stages=1, |
| 29 | + norm_cfg=dict(type='BN', requires_grad=False), |
| 30 | + norm_eval=True, |
| 31 | + style='pytorch', |
| 32 | + init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), |
| 33 | + neck=dict( |
| 34 | + type='mmdet.FPN_DropBlock', |
| 35 | + plugin=dict( |
| 36 | + type='mmdet.DropBlock', |
| 37 | + drop_prob=0.3, |
| 38 | + block_size=3, |
| 39 | + warmup_iters=0), |
| 40 | + in_channels=[512, 1024, 2048], |
| 41 | + out_channels=256, |
| 42 | + start_level=0, |
| 43 | + relu_before_extra_convs=True, |
| 44 | + add_extra_convs='on_output', |
| 45 | + num_outs=5), |
| 46 | + bbox_head=dict( |
| 47 | + type='RotatedATSSVLFusionHead', |
| 48 | + lang_model_name=lang_model_name, |
| 49 | + num_classes=20, |
| 50 | + in_channels=256, |
| 51 | + feat_channels=256, |
| 52 | + anchor_generator=dict( |
| 53 | + type='FakeRotatedAnchorGenerator', |
| 54 | + angle_version=angle_version, |
| 55 | + ratios=[1.0], |
| 56 | + octave_base_scale=8, # |
| 57 | + scales_per_octave=1, |
| 58 | + strides=[8, 16, 32, 64, 128]), |
| 59 | + bbox_coder=dict( |
| 60 | + type='DeltaXYWHTRBBoxCoder', |
| 61 | + angle_version=angle_version, |
| 62 | + norm_factor=None, |
| 63 | + edge_swap=True, |
| 64 | + proj_xy=True, |
| 65 | + target_means=(.0, .0, .0, .0, .0), |
| 66 | + target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)), |
| 67 | + loss_cls=dict( |
| 68 | + type='mmdet.FocalLoss', |
| 69 | + use_sigmoid=True, |
| 70 | + gamma=2.0, |
| 71 | + alpha=0.25, |
| 72 | + loss_weight=1.0), |
| 73 | + loss_bbox=dict(type='RotatedIoULoss', mode='linear', loss_weight=2.0), |
| 74 | + loss_centerness=dict( |
| 75 | + type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), |
| 76 | + language_model=dict(type='mmdet.BertModel', name=lang_model_name), |
| 77 | + train_cfg=dict( |
| 78 | + assigner=dict( |
| 79 | + type='RotatedATSSAssigner', |
| 80 | + topk=9, |
| 81 | + iou_calculator=dict(type='RBboxOverlaps2D')), |
| 82 | + sampler=dict( |
| 83 | + type='mmdet.PseudoSampler'), # Focal loss should use PseudoSampler |
| 84 | + allowed_border=-1, |
| 85 | + pos_weight=-1, |
| 86 | + debug=False), |
| 87 | + test_cfg=dict( |
| 88 | + nms_pre=2000, |
| 89 | + min_bbox_size=0, |
| 90 | + score_thr=0.05, |
| 91 | + nms=dict(type='nms_rotated', iou_threshold=0.1), |
| 92 | + max_per_img=2000)) |
| 93 | + |
| 94 | +# dataset settings |
| 95 | +train_pipeline = [ |
| 96 | + dict(type='mmdet.LoadImageFromFile', backend_args=_base_.backend_args), |
| 97 | + dict(type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'), |
| 98 | + dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')), |
| 99 | + dict(type='mmdet.Resize', scale=(800, 800), keep_ratio=True), |
| 100 | + dict(type='mmdet.FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), |
| 101 | + dict( |
| 102 | + type='mmdet.RandomFlip', |
| 103 | + prob=0.75, |
| 104 | + direction=['horizontal', 'vertical', 'diagonal']), |
| 105 | + dict( |
| 106 | + type='mmdet.PackDetInputs', |
| 107 | + meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
| 108 | + 'scale_factor', 'flip', 'flip_direction', 'text', |
| 109 | + 'custom_entities')) |
| 110 | +] |
| 111 | + |
| 112 | +val_pipeline = [ |
| 113 | + dict(type='mmdet.LoadImageFromFile', backend_args=_base_.backend_args), |
| 114 | + dict(type='mmdet.Resize', scale=(800, 800), keep_ratio=True), |
| 115 | + dict(type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'), |
| 116 | + dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')), |
| 117 | + dict( |
| 118 | + type='mmdet.PackDetInputs', |
| 119 | + meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
| 120 | + 'scale_factor', 'text', 'custom_entities')) |
| 121 | +] |
| 122 | + |
| 123 | + |
| 124 | +train_dataloader = dict( |
| 125 | + batch_size=batch_size, |
| 126 | + num_workers=num_workers, |
| 127 | + sampler=dict(type='DefaultSampler'), |
| 128 | + dataset=dict( |
| 129 | + pipeline=train_pipeline, |
| 130 | + return_classes=True)) |
| 131 | + |
| 132 | +val_dataloader = dict( |
| 133 | + batch_size=batch_size, |
| 134 | + num_workers=num_workers, |
| 135 | + dataset=dict( |
| 136 | + pipeline=val_pipeline, |
| 137 | + return_classes=True)) |
| 138 | + |
| 139 | +# test_dataloader = val_dataloader |
| 140 | +test_dataloader = dict( |
| 141 | + batch_size=2, |
| 142 | + num_workers=num_workers, |
| 143 | + dataset=dict( |
| 144 | + ann_file='ImageSets/Main/test.txt', |
| 145 | + # data_prefix=dict(img_path='JPEGImages-trainval'), |
| 146 | + pipeline=val_pipeline, |
| 147 | + return_classes=True) |
| 148 | + ) |
| 149 | + |
| 150 | +# training schedule for 180k |
| 151 | +train_cfg = dict( |
| 152 | + type='IterBasedTrainLoop', max_iters=20000, val_interval=4000) |
| 153 | +val_cfg = dict(type='ValLoop') |
| 154 | +test_cfg = dict(type='TestLoop') |
| 155 | + |
| 156 | +# learning rate policy |
| 157 | +param_scheduler = [ |
| 158 | + dict( |
| 159 | + type='LinearLR', start_factor= 1.0 / 3, by_epoch=False, begin=0, end=500), |
| 160 | + dict( |
| 161 | + type='MultiStepLR', |
| 162 | + begin=0, |
| 163 | + end=20000, |
| 164 | + by_epoch=False, |
| 165 | + milestones=[16000, 18000], |
| 166 | + gamma=0.1) |
| 167 | +] |
| 168 | + |
| 169 | +# optimizer |
| 170 | +optim_wrapper = dict( |
| 171 | + type='OptimWrapper', |
| 172 | + optimizer=dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001), |
| 173 | + paramwise_cfg=dict( |
| 174 | + custom_keys={ |
| 175 | + 'absolute_pos_embed': dict(decay_mult=0.), |
| 176 | + 'relative_position_bias_table': dict(decay_mult=0.), |
| 177 | + 'norm': dict(decay_mult=0.) |
| 178 | + }), |
| 179 | + clip_grad=dict(max_norm=35, norm_type=2)) |
| 180 | + |
| 181 | + |
| 182 | +default_hooks = dict( |
| 183 | + logger=dict(type='LoggerHook', interval=20), |
| 184 | + checkpoint=dict(by_epoch=False, interval=2000, max_keep_ckpts=1)) |
| 185 | +log_processor = dict(by_epoch=False) |
| 186 | + |
| 187 | +_base_.visualizer.vis_backends = [ |
| 188 | + dict(type='LocalVisBackend'), |
| 189 | + dict(type='TensorboardVisBackend') |
| 190 | + ] |
0 commit comments