|
| 1 | +#!/usr/bin/env python |
| 2 | +# coding: utf-8 |
| 3 | + |
| 4 | +# In[1]: |
| 5 | + |
| 6 | + |
| 7 | +import sys |
| 8 | +import numpy as np |
| 9 | +import pandas as pd |
| 10 | +from wedpr_ml_toolkit.config.wedpr_ml_config import WeDPRMlConfigBuilder |
| 11 | +from wedpr_ml_toolkit.wedpr_ml_toolkit import WeDPRMlToolkit |
| 12 | +from wedpr_ml_toolkit.context.dataset_context import DatasetContext |
| 13 | +from wedpr_ml_toolkit.context.data_context import DataContext |
| 14 | +from wedpr_ml_toolkit.context.job_context import JobType |
| 15 | +from wedpr_ml_toolkit.context.model_setting import ModelSetting |
| 16 | +from wedpr_ml_toolkit.context.result.model_result_context import PredictResultContext |
| 17 | +from wedpr_ml_toolkit.context.result.model_result_context import TrainResultContext |
| 18 | +from wedpr_ml_toolkit.context.result.model_result_context import PreprocessingResultContext |
| 19 | + |
| 20 | + |
| 21 | +# In[2]: |
| 22 | + |
| 23 | + |
| 24 | +# 读取配置文件 |
| 25 | +wedpr_config = WeDPRMlConfigBuilder.build_from_properties_file('config.properties') |
| 26 | +wedpr_ml_toolkit = WeDPRMlToolkit(wedpr_config) |
| 27 | + |
| 28 | + |
| 29 | +# In[3]: |
| 30 | + |
| 31 | + |
| 32 | +# dataset1 |
| 33 | +dataset1 = DatasetContext(storage_entrypoint=wedpr_ml_toolkit.get_storage_entry_point(), |
| 34 | + dataset_client=wedpr_ml_toolkit.dataset_client, |
| 35 | + dataset_id = 'd-9743660607744005', |
| 36 | + is_label_holder=True) |
| 37 | +print(f"* load dataset1: {dataset1}") |
| 38 | +(values, cols, shapes) = dataset1.load_values() |
| 39 | +print(f"* dataset1 detail: {cols}, {shapes}") |
| 40 | +print(f"* dataset1 value: {values}") |
| 41 | + |
| 42 | + |
| 43 | +# In[4]: |
| 44 | + |
| 45 | + |
| 46 | +# dataset2 |
| 47 | +dataset2 = DatasetContext(storage_entrypoint=wedpr_ml_toolkit.get_storage_entry_point(), |
| 48 | + dataset_client = wedpr_ml_toolkit.dataset_client, |
| 49 | + dataset_id = "d-9743674298214405") |
| 50 | +print(f"* dataset2: {dataset2}") |
| 51 | + |
| 52 | +# 构建 dataset context |
| 53 | +dataset = DataContext(dataset1, dataset2) |
| 54 | +print(dataset.datasets) |
| 55 | + |
| 56 | +# init the job context |
| 57 | +project_id = "9737304249804806" |
| 58 | + |
| 59 | +# 构造xgb任务配置 |
| 60 | +model_setting = ModelSetting() |
| 61 | +model_setting.use_psi = True |
| 62 | +xgb_job_context = wedpr_ml_toolkit.build_job_context( |
| 63 | + job_type = JobType.XGB_TRAINING, |
| 64 | + project_id = project_id, |
| 65 | + dataset = dataset, |
| 66 | + model_setting = model_setting, |
| 67 | + id_fields = "id") |
| 68 | +print(f"* build xgb job context: {xgb_job_context}") |
| 69 | + |
| 70 | + |
| 71 | +# In[5]: |
| 72 | + |
| 73 | + |
| 74 | +# 执行xgb任务 |
| 75 | +xgb_job_id = xgb_job_context.submit() |
| 76 | +print(xgb_job_id) |
| 77 | + |
| 78 | + |
| 79 | +# In[7]: |
| 80 | + |
| 81 | + |
| 82 | +# 获取xgb任务结果 |
| 83 | +print(xgb_job_id) |
| 84 | +#xgb_job_id = "9868279583877126" |
| 85 | +xgb_result_detail = xgb_job_context.fetch_job_result(xgb_job_id, True) |
| 86 | +# load the result context |
| 87 | +xgb_result_context = wedpr_ml_toolkit.build_result_context(job_context=xgb_job_context, |
| 88 | + job_result_detail=xgb_result_detail) |
| 89 | +print(f"* xgb job result ctx: {xgb_result_context}") |
| 90 | + |
| 91 | +xgb_test_dataset = xgb_result_context.test_result_dataset |
| 92 | +print(f"* xgb_test_dataset: {xgb_test_dataset}, file_path: {xgb_test_dataset.dataset_meta.file_path}") |
| 93 | + |
| 94 | +(data, cols, shapes) = xgb_test_dataset.load_values() |
| 95 | +print(f"* test dataset detail, columns: {cols}, shape: {shapes}, value: {data}") |
| 96 | + |
| 97 | + |
| 98 | +# In[8]: |
| 99 | + |
| 100 | + |
| 101 | +# evaluation result |
| 102 | +result_context: TrainResultContext = xgb_result_context |
| 103 | +evaluation_result_dataset = result_context.evaluation_dataset |
| 104 | +(eval_data, cols, shape) = evaluation_result_dataset.load_values(header=0) |
| 105 | +print(f"* evaluation detail, col: {cols}, shape: {shape}, eval_data: {eval_data}") |
| 106 | + |
| 107 | + |
| 108 | +# In[9]: |
| 109 | + |
| 110 | + |
| 111 | +# feature importance |
| 112 | +feature_importance_dataset = result_context.feature_importance_dataset |
| 113 | +(feature_importance_data, cols, shape) = feature_importance_dataset.load_values() |
| 114 | + |
| 115 | +print(f"* feature_importance detail, col: {cols}, shape: {shape}, feature_importance_data: {feature_importance_data}") |
| 116 | + |
| 117 | + |
| 118 | +# In[10]: |
| 119 | + |
| 120 | + |
| 121 | +# 预处理结果 |
| 122 | +preprocessing_dataset = result_context.preprocessing_dataset |
| 123 | +(preprocessing_data, cols, shape) = preprocessing_dataset.load_values() |
| 124 | + |
| 125 | +print(f"* preprocessing detail, col: {cols}, shape: {shape}, preprocessing_data: {preprocessing_data}") |
| 126 | + |
| 127 | + |
| 128 | +# In[11]: |
| 129 | + |
| 130 | + |
| 131 | +# 建模结果 |
| 132 | +model_result_dataset = result_context.model_result_dataset |
| 133 | +(model_result, cols, shape) = model_result_dataset.load_values() |
| 134 | + |
| 135 | +print(f"* model_result detail, col: {cols}, shape: {shape}, model_result: {model_result}") |
| 136 | + |
| 137 | + |
| 138 | +# In[12]: |
| 139 | + |
| 140 | + |
| 141 | +# 明文处理预测结果 |
| 142 | +from sklearn.metrics import roc_curve, roc_auc_score, precision_recall_curve, accuracy_score, f1_score, precision_score, recall_score |
| 143 | +import matplotlib.pyplot as plt |
| 144 | + |
| 145 | +# 提取真实标签和预测概率 |
| 146 | +y_true = data['class_label'] |
| 147 | +y_pred_proba = data['class_pred'] |
| 148 | +y_pred = np.where(y_pred_proba >= 0.5, 1, 0) # 二分类阈值设为0.5 |
| 149 | + |
| 150 | +# 计算评估指标 |
| 151 | +accuracy = accuracy_score(y_true, y_pred) |
| 152 | +precision = precision_score(y_true, y_pred) |
| 153 | +recall = recall_score(y_true, y_pred) |
| 154 | +f1 = f1_score(y_true, y_pred) |
| 155 | +auc = roc_auc_score(y_true, y_pred_proba) |
| 156 | + |
| 157 | +print(f"Accuracy: {accuracy:.2f}") |
| 158 | +print(f"Precision: {precision:.2f}") |
| 159 | +print(f"Recall: {recall:.2f}") |
| 160 | +print(f"F1 Score: {f1:.2f}") |
| 161 | +print(f"AUC: {auc:.2f}") |
| 162 | + |
| 163 | +# ROC 曲线 |
| 164 | +fpr, tpr, _ = roc_curve(y_true, y_pred_proba) |
| 165 | +plt.figure(figsize=(12, 5)) |
| 166 | + |
| 167 | +# ROC 曲线 |
| 168 | +plt.subplot(1, 2, 1) |
| 169 | +plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}') |
| 170 | +plt.plot([0, 1], [0, 1], 'k--') |
| 171 | +plt.xlabel('False Positive Rate') |
| 172 | +plt.ylabel('True Positive Rate') |
| 173 | +plt.title('ROC Curve') |
| 174 | +plt.legend() |
| 175 | + |
| 176 | +# 精确率-召回率曲线 |
| 177 | +precision_vals, recall_vals, _ = precision_recall_curve(y_true, y_pred_proba) |
| 178 | +plt.subplot(1, 2, 2) |
| 179 | +plt.plot(recall_vals, precision_vals) |
| 180 | +plt.xlabel('Recall') |
| 181 | +plt.ylabel('Precision') |
| 182 | +plt.title('Precision-Recall Curve') |
| 183 | + |
| 184 | +plt.tight_layout() |
| 185 | +plt.show() |
| 186 | + |
| 187 | + |
| 188 | +# In[13]: |
| 189 | + |
| 190 | + |
| 191 | +# 构造xgb预测任务配置 |
| 192 | +predict_setting = ModelSetting() |
| 193 | +predict_setting.use_psi = True |
| 194 | +#model_predict_algorithm = {} |
| 195 | +#model_predict_algorithm.update({"setting": xgb_result_context.job_result_detail.model}) |
| 196 | +predict_xgb_job_context = wedpr_ml_toolkit.build_job_context( |
| 197 | + job_type=JobType.XGB_PREDICTING, |
| 198 | + project_id = project_id, |
| 199 | + dataset= dataset, |
| 200 | + model_setting= predict_setting, |
| 201 | + id_fields = "id", |
| 202 | + predict_algorithm = xgb_result_context.job_result_detail.model_predict_algorithm) |
| 203 | +print(f"* predict_xgb_job_context: {predict_xgb_job_context}") |
| 204 | + |
| 205 | + |
| 206 | +# In[14]: |
| 207 | + |
| 208 | + |
| 209 | +# 执行xgb预测任务 |
| 210 | +# xgb_job_id = '9868428439267334' # 测试时跳过创建新任务过程 |
| 211 | +xgb_predict_job_id = predict_xgb_job_context.submit() |
| 212 | +print(xgb_predict_job_id) |
| 213 | + |
| 214 | + |
| 215 | +# In[15]: |
| 216 | + |
| 217 | + |
| 218 | +# query the job detail |
| 219 | +print(f"* xgb_predict_job_id: {xgb_predict_job_id}") |
| 220 | + |
| 221 | +predict_xgb_job_result = predict_xgb_job_context.fetch_job_result(xgb_predict_job_id, True) |
| 222 | + |
| 223 | +# generate the result context |
| 224 | +result_context = wedpr_ml_toolkit.build_result_context(job_context=predict_xgb_job_context, |
| 225 | + job_result_detail=predict_xgb_job_result) |
| 226 | + |
| 227 | +xgb_predict_result_context : PredictResultContext = result_context |
| 228 | +print(f"* result_context is {xgb_predict_result_context}") |
| 229 | + |
| 230 | + |
| 231 | +# In[16]: |
| 232 | + |
| 233 | + |
| 234 | +# 明文处理预测结果 |
| 235 | +from sklearn.metrics import roc_curve, roc_auc_score, precision_recall_curve, accuracy_score, f1_score, precision_score, recall_score |
| 236 | +import matplotlib.pyplot as plt |
| 237 | + |
| 238 | + |
| 239 | +(data, cols, shapes) = xgb_predict_result_context.model_result_dataset.load_values(header = 0) |
| 240 | + |
| 241 | +# 提取真实标签和预测概率 |
| 242 | +y_true = data['class_label'] |
| 243 | +y_pred_proba = data['class_pred'] |
| 244 | +y_pred = np.where(y_pred_proba >= 0.5, 1, 0) # 二分类阈值设为0.5 |
| 245 | + |
| 246 | +# 计算评估指标 |
| 247 | +accuracy = accuracy_score(y_true, y_pred) |
| 248 | +precision = precision_score(y_true, y_pred) |
| 249 | +recall = recall_score(y_true, y_pred) |
| 250 | +f1 = f1_score(y_true, y_pred) |
| 251 | +auc = roc_auc_score(y_true, y_pred_proba) |
| 252 | + |
| 253 | +print(f"Accuracy: {accuracy:.2f}") |
| 254 | +print(f"Precision: {precision:.2f}") |
| 255 | +print(f"Recall: {recall:.2f}") |
| 256 | +print(f"F1 Score: {f1:.2f}") |
| 257 | +print(f"AUC: {auc:.2f}") |
| 258 | + |
| 259 | +# ROC 曲线 |
| 260 | +fpr, tpr, _ = roc_curve(y_true, y_pred_proba) |
| 261 | +plt.figure(figsize=(12, 5)) |
| 262 | + |
| 263 | +# ROC 曲线 |
| 264 | +plt.subplot(1, 2, 1) |
| 265 | +plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}') |
| 266 | +plt.plot([0, 1], [0, 1], 'k--') |
| 267 | +plt.xlabel('False Positive Rate') |
| 268 | +plt.ylabel('True Positive Rate') |
| 269 | +plt.title('ROC Curve') |
| 270 | +plt.legend() |
| 271 | + |
| 272 | +# 精确率-召回率曲线 |
| 273 | +precision_vals, recall_vals, _ = precision_recall_curve(y_true, y_pred_proba) |
| 274 | +plt.subplot(1, 2, 2) |
| 275 | +plt.plot(recall_vals, precision_vals) |
| 276 | +plt.xlabel('Recall') |
| 277 | +plt.ylabel('Precision') |
| 278 | +plt.title('Precision-Recall Curve') |
| 279 | + |
| 280 | +plt.tight_layout() |
| 281 | +plt.show() |
| 282 | + |
| 283 | + |
| 284 | +# In[ ]: |
| 285 | + |
| 286 | + |
| 287 | + |
| 288 | + |
0 commit comments