|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stdout", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "['/usr/lib/python3/dist-packages/wedpr_ml_toolkit/', 'd:\\\\github\\\\wedpr3.0\\\\WeDPR-Component\\\\python\\\\wedpr_ml_toolkit', 'd:\\\\github\\\\wedpr3.0\\\\WeDPR-Component\\\\python', 'd:\\\\github\\\\wedpr3.0\\\\WeDPR-Component\\\\python', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\python38.zip', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\DLLs', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\lib', 'c:\\\\Users\\\\yanxi\\\\anaconda3', '', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\lib\\\\site-packages', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\lib\\\\site-packages\\\\win32', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\lib\\\\site-packages\\\\win32\\\\lib', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\lib\\\\site-packages\\\\Pythonwin', 'c:\\\\Users\\\\yanxi\\\\anaconda3\\\\lib\\\\site-packages\\\\IPython\\\\extensions', 'C:\\\\Users\\\\yanxi\\\\.ipython']\n" |
| 13 | + ] |
| 14 | + } |
| 15 | + ], |
| 16 | + "source": [ |
| 17 | + "import numpy as np\n", |
| 18 | + "import pandas as pd\n", |
| 19 | + "from wedpr_ml_toolkit.config.wedpr_ml_config import WeDPRMlConfigBuilder\n", |
| 20 | + "from wedpr_ml_toolkit.wedpr_ml_toolkit import WeDPRMlToolkit\n", |
| 21 | + "from wedpr_ml_toolkit.toolkit.dataset_toolkit import DatasetToolkit" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 2, |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "# 读取配置文件\n", |
| 31 | + "wedpr_config = WeDPRMlConfigBuilder.build_from_properties_file('config.properties')\n", |
| 32 | + "wedpr_ml_toolkit = WeDPRMlToolkit(wedpr_config)" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 3, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [ |
| 40 | + { |
| 41 | + "name": "stdout", |
| 42 | + "output_type": "stream", |
| 43 | + "text": [ |
| 44 | + "http://139.159.202.235:50070 /user/ppc/milestone2/sgd/test_user SGD\n", |
| 45 | + "/user/ppc/milestone2/sgd/test_user\\d-101\n", |
| 46 | + " id y x1 x2 x3 x4 x5 x6 \\\n", |
| 47 | + "0 0 1 0.954183 0.652034 0.704070 0.180889 0.025025 0.511596 \n", |
| 48 | + "1 1 1 0.302088 0.462222 0.435542 0.029966 0.931294 0.848483 \n", |
| 49 | + "2 2 1 0.468104 0.430161 0.239322 0.588153 0.470668 0.225856 \n", |
| 50 | + "3 3 0 0.152269 0.811666 0.834451 0.354288 0.635447 0.062092 \n", |
| 51 | + "4 4 0 0.841470 0.800512 0.451507 0.118651 0.748845 0.557916 \n", |
| 52 | + "\n", |
| 53 | + " x7 x8 x9 x10 \n", |
| 54 | + "0 0.529848 0.759689 0.159081 0.556419 \n", |
| 55 | + "1 0.962787 0.224096 0.464418 0.208487 \n", |
| 56 | + "2 0.564879 0.730366 0.394245 0.299081 \n", |
| 57 | + "3 0.424057 0.202234 0.577448 0.636958 \n", |
| 58 | + "4 0.030906 0.514350 0.340864 0.123303 \n" |
| 59 | + ] |
| 60 | + } |
| 61 | + ], |
| 62 | + "source": [ |
| 63 | + "# 注册 dataset,支持两种方式: pd.Dataframe, hdfs_path\n", |
| 64 | + "# 1. pd.Dataframe\n", |
| 65 | + "df = pd.DataFrame({\n", |
| 66 | + " 'id': np.arange(0, 100), # id列,顺序整数\n", |
| 67 | + " 'y': np.random.randint(0, 2, size=100),\n", |
| 68 | + " # x1到x10列,随机数\n", |
| 69 | + " **{f'x{i}': np.random.rand(100) for i in range(1, 11)}\n", |
| 70 | + "})\n", |
| 71 | + "\n", |
| 72 | + "dataset1 = DatasetToolkit(storage_entrypoint=wedpr_ml_toolkit.get_storage_entry_point(),\n", |
| 73 | + " storage_workspace=wedpr_config.user_config.get_workspace_path(),\n", |
| 74 | + " dataset_owner='flyhuang1',\n", |
| 75 | + " agency=wedpr_config.user_config.agency_name,\n", |
| 76 | + " values=df,\n", |
| 77 | + " is_label_holder=True)\n", |
| 78 | + "print(dataset1.storage_client.storage_client.endpoint, dataset1.storage_workspace, dataset1.agency)\n", |
| 79 | + "dataset1.storage_client = None # 本地测试时跳过hdfs上传/下载过程\n", |
| 80 | + "dataset1.save_values(path='d-101')\n", |
| 81 | + "print(dataset1.dataset_path)\n", |
| 82 | + "print(dataset1.values.head())" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 4, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [ |
| 90 | + { |
| 91 | + "name": "stdout", |
| 92 | + "output_type": "stream", |
| 93 | + "text": [ |
| 94 | + "http://139.159.202.235:50070 /user/ppc/milestone2/sgd/test_user WeBank\n", |
| 95 | + "/user/ppc/milestone2/webank/flyhuang/d-9606695119693829\n", |
| 96 | + "/user/ppc/milestone2/webank/flyhuang/d-9606695119693829\n", |
| 97 | + " id z1 z2 z3 z4 z5 z6 z7 \\\n", |
| 98 | + "0 0 0.597205 0.942475 0.886443 0.560584 0.254432 0.370152 0.076031 \n", |
| 99 | + "1 1 0.778616 0.607374 0.616211 0.602282 0.385989 0.816963 0.756814 \n", |
| 100 | + "2 2 0.999795 0.596794 0.240741 0.241070 0.857676 0.342412 0.066459 \n", |
| 101 | + "3 3 0.968410 0.895163 0.636140 0.978791 0.237098 0.095272 0.938806 \n", |
| 102 | + "4 4 0.921513 0.454901 0.004514 0.769216 0.627185 0.676253 0.184952 \n", |
| 103 | + "\n", |
| 104 | + " z8 z9 z10 \n", |
| 105 | + "0 0.587627 0.851390 0.864929 \n", |
| 106 | + "1 0.661537 0.865674 0.050091 \n", |
| 107 | + "2 0.473916 0.080120 0.477873 \n", |
| 108 | + "3 0.452399 0.953515 0.405465 \n", |
| 109 | + "4 0.877475 0.316322 0.139290 \n" |
| 110 | + ] |
| 111 | + } |
| 112 | + ], |
| 113 | + "source": [ |
| 114 | + "# 2. hdfs_path\n", |
| 115 | + "dataset2 = DatasetToolkit(storage_entrypoint=wedpr_ml_toolkit.get_storage_entry_point(), \n", |
| 116 | + " storage_workspace=wedpr_config.user_config.get_workspace_path(), \n", |
| 117 | + " dataset_owner='flyhuang',\n", |
| 118 | + " dataset_path=\"/user/ppc/milestone2/webank/flyhuang/d-9606695119693829\", \n", |
| 119 | + " agency=\"WeBank\")\n", |
| 120 | + "print(dataset2.storage_client.storage_client.endpoint, dataset2.storage_workspace, dataset2.agency)\n", |
| 121 | + "print(dataset2.dataset_path)\n", |
| 122 | + "dataset2.storage_client = None # 本地测试时跳过hdfs上传/下载过程\n", |
| 123 | + "\n", |
| 124 | + "# 提供本地测试数据\n", |
| 125 | + "if dataset2.storage_client is None:\n", |
| 126 | + " # 支持更新dataset的values数据\n", |
| 127 | + " df2 = pd.DataFrame({\n", |
| 128 | + " 'id': np.arange(0, 100), # id列,顺序整数\n", |
| 129 | + " **{f'z{i}': np.random.rand(100) for i in range(1, 11)} # x1到x10列,随机数\n", |
| 130 | + " })\n", |
| 131 | + " dataset2.update_values(values=df2)\n", |
| 132 | + " dataset2.save_values()\n", |
| 133 | + " print(dataset2.dataset_path)\n", |
| 134 | + " print(dataset2.values.head())\n", |
| 135 | + "\n", |
| 136 | + "# 对于己方数据集支持load_values,其他方数据集无需load_values,可直接使用\n", |
| 137 | + "if dataset2.storage_client is not None:\n", |
| 138 | + " # 仅支持load本机构hdfs的数据集\n", |
| 139 | + " dataset2.load_values(header=0)\n", |
| 140 | + " print(dataset2.dataset_path)\n", |
| 141 | + " print(dataset2.values.head())" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": 5, |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [ |
| 149 | + { |
| 150 | + "name": "stdout", |
| 151 | + "output_type": "stream", |
| 152 | + "text": [ |
| 153 | + "/user/ppc/milestone2/sgd/test_user\\d-101\n", |
| 154 | + " id y x1 x2 x3 x4 x5 x6 \\\n", |
| 155 | + "0 0 1 0.954183 0.652034 0.704070 0.180889 0.025025 0.511596 \n", |
| 156 | + "1 1 1 0.302088 0.462222 0.435542 0.029966 0.931294 0.848483 \n", |
| 157 | + "2 2 1 0.468104 0.430161 0.239322 0.588153 0.470668 0.225856 \n", |
| 158 | + "3 3 0 0.152269 0.811666 0.834451 0.354288 0.635447 0.062092 \n", |
| 159 | + "4 4 0 0.841470 0.800512 0.451507 0.118651 0.748845 0.557916 \n", |
| 160 | + "\n", |
| 161 | + " x7 x8 x9 x10 \n", |
| 162 | + "0 0.529848 0.759689 0.159081 0.556419 \n", |
| 163 | + "1 0.962787 0.224096 0.464418 0.208487 \n", |
| 164 | + "2 0.564879 0.730366 0.394245 0.299081 \n", |
| 165 | + "3 0.424057 0.202234 0.577448 0.636958 \n", |
| 166 | + "4 0.030906 0.514350 0.340864 0.123303 \n" |
| 167 | + ] |
| 168 | + } |
| 169 | + ], |
| 170 | + "source": [ |
| 171 | + "# 更新数据集\n", |
| 172 | + "if dataset1.storage_client is not None:\n", |
| 173 | + " dataset1.update_values(\n", |
| 174 | + " path='/user/ppc/milestone2/sgd/flyhuang1/d-9606704699156485')\n", |
| 175 | + " dataset1.load_values(header=0)\n", |
| 176 | + "print(dataset1.dataset_path)\n", |
| 177 | + "print(dataset1.values.head())" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [] |
| 186 | + } |
| 187 | + ], |
| 188 | + "metadata": { |
| 189 | + "kernelspec": { |
| 190 | + "display_name": "base", |
| 191 | + "language": "python", |
| 192 | + "name": "python3" |
| 193 | + }, |
| 194 | + "language_info": { |
| 195 | + "codemirror_mode": { |
| 196 | + "name": "ipython", |
| 197 | + "version": 3 |
| 198 | + }, |
| 199 | + "file_extension": ".py", |
| 200 | + "mimetype": "text/x-python", |
| 201 | + "name": "python", |
| 202 | + "nbconvert_exporter": "python", |
| 203 | + "pygments_lexer": "ipython3", |
| 204 | + "version": "3.8.5" |
| 205 | + } |
| 206 | + }, |
| 207 | + "nbformat": 4, |
| 208 | + "nbformat_minor": 2 |
| 209 | +} |
0 commit comments