Skip to content

Linkers evaluation

Marco Fossati edited this page Apr 24, 2019 · 12 revisions

Setting

  • run: April 11 2019 on soweego-1 VPS instance;
  • output folder: /srv/dev/20190411;
  • head commit: 1505429997b878568a9e24185dc3afa7ad4720eb;
  • command: python -m soweego linker evaluate ${Algorithm} ${Dataset} ${Entity};
  • evaluation technique: stratified 5-fold cross validation over training/test splits;
  • mean performance scores over the folds.

Algorithms parameters

  • Naïve Bayes (NB):
    • binarize = 0.1;
    • alpha = 0.0001;
  • liblinear SVM (LSVM): default parameters as per scikit LinearSVC;
  • libsvm SVM (SVM):
    • kernel = linear;
    • other parameters as per scikit SVC defaults;
  • single-layer perceptron (SLP):
    • layer = fully connected (Dense);
    • activation = sigmoid;
    • optimizer = stochastic gradient descent;
    • loss = binary cross-entropy;
    • training batch size = 1,024;
    • training epochs = 100.

Performance

Algorithm Dataset Entity Precision (std) Recall (std) F-score (std)
NB Discogs Band .789 (.0031) .941 (.0004) .859 (.002)
LSVM Discogs Band .785 (.0058) .946 (.0029) .858 (.0034)
SVM Discogs Band .777 (.003) .963 (.0016) .86 (.0024)
SLP Discogs Band .776 (.0041) .956 (.0012) .857 (.0029)
NB Discogs Musician .836 (.0018) .958 (.0012) .893 (.0013)
SVM Discogs Musician .814 (.0015) .986 (.0003) .892 (.001)
SLP Discogs Musician .815 (.002) .985 (.0006) .892 (.0012)
NB IMDb Actor TODO TODO TODO
SVM IMDb Actor TODO TODO TODO
SLP IMDb Actor TODO TODO TODO
NB IMDb Director .897 (.00195) .971 (.0012) .932 (.001)
SVM IMDb Director .919 (.0031) .942 (.0019) .93 (.002)
SLP IMDb Director .867 (.0115) .953 (.0043) .908 (.0056)
NB IMDb Musician .891 (.0042) .96 (.0022) .924 (.0026)
SVM IMDb Musician .917 (.0043) .937 (.0034) .927 (.003)
SLP IMDb Musician .922 (.005) .914 (.0092) .918 (.0055)
NB IMDb Producer .871 (.0023) .97 (.0037) .918 (.0011)
SVM IMDb Producer .92 (.005) .938 (.0038) .929 (.0026)
SLP IMDb Producer .862 (.0609) .914 (.0648) .883 (.0185)
NB IMDb Writer .91 (.003) .961 (.0022) .935 (.0022)
SVM IMDb Writer .936 (.0029) .948 (.0025) .942 (.0026)
SLP IMDb Writer .903 (.0154) .955 (.0147) .928 (.0047)
NB MusicBrainz Band .822 (.00169) .985 (.0008) .896 (.001)
SVM MusicBrainz Band .943 (.0019) .888 (.0027) .914 (.0016)
SLP MusicBrainz Band .93 (.0265) .885 (.0103) .907 (.0082)
NB MusicBrainz Musician .955 (.0009) .936 (.0011) .946 (.00068)
SVM MusicBrainz Musician .941 (.0011) .962 (.001) .952 (.0004)
SLP MusicBrainz Musician .943 (.0018) .956 (.0019) .949 (.0007)

Confidence

The following plots display the confidence scores distribution and the total predictions yielded by each algorithm on each target classification set.

Note that linear SVM is omitted since it does not output probability scores.

Axes:

  • x = # predictions;
  • y = confidence score.

Discogs band

NB, SVM, SLP.

Discogs musician

NB, SVM, SLP.

IMDb director

NB, SVM, SLP.

IMDb musician

NB, SVM, SLP.

IMDb producer

NB, SVM, SLP.

IMDb writer

NB, SVM, SLP.

MusicBrainz band

NB, SVM, SLP.

MusicBrainz musician

NB, SVM, SLP.

Comparison

Discogs band

WD items: 50,316

Measure NB LSVM SVM SLP
Precision .789 .785 .777 .776
Recall .941 .946 .963 .957
F-score .859 .858 .86 .857
# predictions 820 51 94,430 91,295

Discogs musician

WD items:

Measure NB LSVM SVM SLP
Precision .836 .814 .815 .815
Recall .958 .986 .985 .985
F-score .893 .892 .892 .892
# predictions TODO TODO TODO TODO

IMDb director

WD items:

Measure NB LSVM SVM SLP
Precision .897 .919 .908 .867
Recall .971 .942 .958 .953
F-score .932 .93 .932 .908
# predictions TODO TODO TODO TODO

IMDb musician

WD items:

Measure NB LSVM SVM SLP
Precision .891 .917 .908 .922
Recall .96 .937 .942 .914
F-score .924 .927 .924 .918
# predictions TODO TODO TODO TODO

IMDb producer

WD items:

Measure NB LSVM SVM SLP
Precision .871 .92 .923 .862
Recall .97 .938 .926 .914
F-score .918 .929 .925 .883
# predictions TODO TODO TODO TODO

IMDb writer

WD items:

Measure NB LSVM SVM SLP
Precision .91 .936 .932 .903
Recall .961 .948 .954 .955
F-score .935 .942 .943 .928
# predictions TODO TODO TODO TODO

MusicBrainz band

WD items:

Measure NB LSVM SVM SLP
Precision .822 .943 .939 .93
Recall .985 .888 .893 .885
F-score .896 .914 .915 .907
# predictions TODO TODO TODO TODO

MusicBrainz musician

WD items:

Measure NB LSVM SVM SLP
Precision .955 .941 .95 .943
Recall .936 .962 .938 .956
F-score .946 .952 .944 .949
# predictions TODO TODO TODO TODO

Clone this wiki locally