@@ -616,6 +616,8 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + Q
616616#define CUDA_UPSCALE_BLOCK_SIZE 256
617617#define CUDA_CONCAT_BLOCK_SIZE 256
618618#define CUDA_PAD_BLOCK_SIZE 256
619+ #define CUDA_ARANGE_BLOCK_SIZE 256
620+ #define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
619621#define CUDA_ACC_BLOCK_SIZE 256
620622#define CUDA_IM2COL_BLOCK_SIZE 256
621623#define CUDA_POOL2D_BLOCK_SIZE 256
@@ -990,17 +992,21 @@ static __global__ void concat_f32(const float * x,const float * y, float * dst,
990992 nidx +
991993 blockIdx .y * ne0 +
992994 blockIdx .z * ne0 * gridDim .y ;
993- dst[offset_dst] = x[offset_src];
995+ dst[offset_dst] = x[offset_src];
994996 } else {
995997 int offset_src =
996998 nidx +
997999 blockIdx .y * ne0 +
9981000 (blockIdx .z - ne02) * ne0 * gridDim .y ;
999- dst[offset_dst] = y[offset_src];
1001+ dst[offset_dst] = y[offset_src];
10001002 }
10011003}
10021004
1003- static __global__ void upscale_f32 (const float * x, float * dst, const int ne00, const int nb02, const int scale_factor) {
1005+ static __global__ void upscale_f32 (const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
1006+ // blockIdx.z: idx of ne02*ne03
1007+ // blockIdx.y: idx of ne01*scale_factor, aka ne1
1008+ // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
1009+ // ne00xne01: ne00 * ne01
10041010 int ne0 = ne00 * scale_factor;
10051011 int nidx = threadIdx .x + blockIdx .x * blockDim .x ;
10061012 if (nidx >= ne0) {
@@ -1012,15 +1018,18 @@ static __global__ void upscale_f32(const float * x, float * dst, const int ne00,
10121018 int offset_src =
10131019 i00 +
10141020 i01 * ne00 +
1015- blockIdx .z * nb02 ;
1021+ blockIdx .z * ne00xne01 ;
10161022 int offset_dst =
10171023 nidx +
10181024 blockIdx .y * ne0 +
10191025 blockIdx .z * ne0 * gridDim .y ;
10201026 dst[offset_dst] = x[offset_src];
10211027}
10221028
1023- static __global__ void pad_f32 (const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02) {
1029+ static __global__ void pad_f32 (const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
1030+ // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
1031+ // blockIdx.y: idx of ne1
1032+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
10241033 int nidx = threadIdx .x + blockIdx .x * blockDim .x ;
10251034 if (nidx >= ne0) {
10261035 return ;
@@ -1031,19 +1040,53 @@ static __global__ void pad_f32(const float * x, float * dst, const int ne0, cons
10311040 nidx +
10321041 blockIdx .y * ne0 +
10331042 blockIdx .z * ne0 * gridDim .y ;
1034- if (nidx < ne00 && blockIdx .y < ne01 && blockIdx .z < ne02) {
1043+ if (nidx < ne00 && blockIdx .y < ne01 && blockIdx .z < ne02*ne03 ) {
10351044 int offset_src =
10361045 nidx +
10371046 blockIdx .y * ne00 +
10381047 blockIdx .z * ne00 * ne01;
1039- dst[offset_dst] = x[offset_src];
1048+ dst[offset_dst] = x[offset_src];
10401049 } else {
10411050 dst[offset_dst] = 0 .0f ;
10421051 }
10431052}
10441053
1054+ static __global__ void arange_f32 (float * dst, const int ne0, const float start, const float step) {
1055+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
1056+ int nidx = threadIdx .x + blockIdx .x * blockDim .x ;
1057+ if (nidx >= ne0) {
1058+ return ;
1059+ }
1060+ dst[nidx] = start + step * nidx;
1061+ }
1062+
1063+ static __global__ void timestep_embedding_f32 (const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
1064+ // blockIDx.y: idx of timesteps->ne[0]
1065+ // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
1066+ int i = blockIdx .y ;
1067+ int j = threadIdx .x + blockIdx .x * blockDim .x ;
1068+ float * embed_data = (float *)((char *)dst + i*nb1);
1069+
1070+ if (dim % 2 != 0 && j == ((dim + 1 ) / 2 )) {
1071+ embed_data[dim] = 0 .f ;
1072+ }
1073+
1074+ int half = dim / 2 ;
1075+ if (j >= half) {
1076+ return ;
1077+ }
1078+
1079+ float timestep = timesteps[i];
1080+ float freq = (float )expf (-logf (max_period) * j / half);
1081+ float arg = timestep * freq;
1082+ embed_data[j] = cosf (arg);
1083+ embed_data[j + half] = sinf (arg);
1084+ }
1085+
10451086template <int block_size>
10461087static __global__ void group_norm_f32 (const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
1088+ // blockIdx.x: num_groups idx
1089+ // threadIdx.x: block_size idx
10471090 int start = blockIdx .x * group_size;
10481091 int end = start + group_size;
10491092
@@ -6448,25 +6491,25 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
64486491 const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
64496492 const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
64506493 const int nb12, const int nb13) {
6451- const int i = blockDim .x *blockIdx .x + threadIdx .x ;
6494+ const int64_t i = blockDim .x *blockIdx .x + threadIdx .x ;
64526495
64536496 if (i >= ne) {
64546497 return ;
64556498 }
64566499
64576500 // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
64586501 // then combine those indices with the corresponding byte offsets to get the total offsets
6459- const int i03 = i/(ne00 * ne01 * ne02);
6460- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
6461- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
6462- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
6463- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
6464-
6465- const int i13 = i/(ne10 * ne11 * ne12);
6466- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
6467- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
6468- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
6469- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
6502+ const int64_t i03 = i/(ne00 * ne01 * ne02);
6503+ const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
6504+ const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
6505+ const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
6506+ const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
6507+
6508+ const int64_t i13 = i/(ne10 * ne11 * ne12);
6509+ const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
6510+ const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
6511+ const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
6512+ const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
64706513
64716514 cpy_1 (cx + x_offset, cdst + dst_offset);
64726515}
@@ -6956,23 +6999,23 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
69566999
69577000template <typename T>
69587001static __global__ void im2col_kernel (
6959- const float * x, T * dst, int batch_offset,
6960- int offset_delta, int IC, int IW, int IH, int OH, int OW, int KW, int KH, int pelements, int CHW,
7002+ const float * x, T * dst, int64_t batch_offset,
7003+ int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
69617004 int s0, int s1, int p0, int p1, int d0, int d1) {
6962- const int i = threadIdx .x + blockIdx .x * blockDim .x ;
7005+ const int64_t i = threadIdx .x + blockIdx .x * blockDim .x ;
69637006 if (i >= pelements) {
69647007 return ;
69657008 }
69667009
6967- const int ksize = OW * (KH > 1 ? KW : 1 );
6968- const int kx = i / ksize;
6969- const int kd = kx * ksize;
6970- const int ky = (i - kd) / OW;
6971- const int ix = i % OW;
7010+ const int64_t ksize = OW * (KH > 1 ? KW : 1 );
7011+ const int64_t kx = i / ksize;
7012+ const int64_t kd = kx * ksize;
7013+ const int64_t ky = (i - kd) / OW;
7014+ const int64_t ix = i % OW;
69727015
6973- const int oh = blockIdx .y ;
6974- const int batch = blockIdx .z / IC;
6975- const int ic = blockIdx .z % IC;
7016+ const int64_t oh = blockIdx .y ;
7017+ const int64_t batch = blockIdx .z / IC;
7018+ const int64_t ic = blockIdx .z % IC;
69767019
69777020 const int64_t iiw = ix * s0 + kx * d0 - p0;
69787021 const int64_t iih = oh * s1 + ky * d1 - p1;
@@ -7298,19 +7341,33 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, const
72987341 concat_f32<<<gridDim , CUDA_CONCAT_BLOCK_SIZE, 0 , stream>>> (x, y, dst, ne0, ne02);
72997342}
73007343
7301- static void upscale_f32_cuda (const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int scale_factor, cudaStream_t stream) {
7344+ static void upscale_f32_cuda (const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
7345+ const int scale_factor, cudaStream_t stream) {
73027346 int ne0 = (ne00 * scale_factor);
73037347 int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1 ) / CUDA_UPSCALE_BLOCK_SIZE;
7304- dim3 gridDim (num_blocks, (ne01 * scale_factor), ne02);
7348+ dim3 gridDim (num_blocks, (ne01 * scale_factor), ne02*ne03 );
73057349 upscale_f32<<<gridDim , CUDA_UPSCALE_BLOCK_SIZE, 0 , stream>>> (x, dst, ne00, ne00 * ne01, scale_factor);
73067350}
73077351
73087352static void pad_f32_cuda (const float * x, float * dst,
7309- const int ne00, const int ne01, const int ne02,
7310- const int ne0, const int ne1, const int ne2, cudaStream_t stream) {
7353+ const int ne00, const int ne01, const int ne02, const int ne03,
7354+ const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
73117355 int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1 ) / CUDA_PAD_BLOCK_SIZE;
7312- dim3 gridDim (num_blocks, ne1, ne2);
7313- pad_f32<<<gridDim , CUDA_PAD_BLOCK_SIZE, 0 , stream>>> (x, dst, ne0, ne00, ne01, ne02);
7356+ dim3 gridDim (num_blocks, ne1, ne2*ne3);
7357+ pad_f32<<<gridDim , CUDA_PAD_BLOCK_SIZE, 0 , stream>>> (x, dst, ne0, ne00, ne01, ne02, ne03);
7358+ }
7359+
7360+ static void arange_f32_cuda (float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
7361+ int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1 ) / CUDA_ARANGE_BLOCK_SIZE;
7362+ arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0 , stream>>> (dst, ne0, start, step);
7363+ }
7364+
7365+ static void timestep_embedding_f32_cuda (const float * x, float * dst, const int ne00, const int nb1,
7366+ const int dim, const int max_period, cudaStream_t stream) {
7367+ int half_ceil = (dim + 1 ) / 2 ;
7368+ int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1 ) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
7369+ dim3 gridDim (num_blocks, ne00, 1 );
7370+ timestep_embedding_f32<<<gridDim , CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0 , stream>>> (x, dst, nb1, dim, max_period);
73147371}
73157372
73167373static void rms_norm_f32_cuda (const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
@@ -8443,8 +8500,8 @@ static void soft_max_f32_cuda(const float * x, const float * mask, const float *
84438500
84448501template <typename T>
84458502static void im2col_cuda (const float * x, T* dst,
8446- int IW, int IH, int OW, int OH, int KW, int KH, int IC,
8447- int batch, int batch_offset, int offset_delta,
8503+ int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
8504+ int64_t batch, int64_t batch_offset, int64_t offset_delta,
84488505 int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
84498506 const int parallel_elements = OW * KW * KH;
84508507 const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1 ) / CUDA_IM2COL_BLOCK_SIZE;
@@ -9123,7 +9180,7 @@ static void ggml_cuda_op_group_norm(
91239180
91249181 int num_groups = dst->op_params [0 ];
91259182 int group_size = src0->ne [0 ] * src0->ne [1 ] * ((src0->ne [2 ] + num_groups - 1 ) / num_groups);
9126- group_norm_f32_cuda (src0_dd, dst_dd, num_groups, group_size, src0-> ne [ 0 ] * src0->ne [1 ] * src0-> ne [ 2 ] , main_stream);
9183+ group_norm_f32_cuda (src0_dd, dst_dd, num_groups * src0->ne [3 ], group_size, ggml_nelements ( src0) , main_stream);
91279184
91289185 (void ) src1;
91299186 (void ) dst;
@@ -9156,7 +9213,7 @@ static void ggml_cuda_op_upscale(
91569213
91579214 const int scale_factor = dst->op_params [0 ];
91589215
9159- upscale_f32_cuda (src0_dd, dst_dd, src0->ne [0 ], src0->ne [1 ], src0->ne [2 ], scale_factor, main_stream);
9216+ upscale_f32_cuda (src0_dd, dst_dd, src0->ne [0 ], src0->ne [1 ], src0->ne [2 ], src0-> ne [ 3 ], scale_factor, main_stream);
91609217
91619218 (void ) src1;
91629219 (void ) dst;
@@ -9172,8 +9229,49 @@ static void ggml_cuda_op_pad(
91729229 GGML_ASSERT (src0->ne [3 ] == 1 && dst->ne [3 ] == 1 ); // just 3D tensors
91739230
91749231 pad_f32_cuda (src0_dd, dst_dd,
9175- src0->ne [0 ], src0->ne [1 ], src0->ne [2 ],
9176- dst->ne [0 ], dst->ne [1 ], dst->ne [2 ], main_stream);
9232+ src0->ne [0 ], src0->ne [1 ], src0->ne [2 ], src0->ne [3 ],
9233+ dst->ne [0 ], dst->ne [1 ], dst->ne [2 ], dst->ne [3 ], main_stream);
9234+
9235+ (void ) src1;
9236+ (void ) dst;
9237+ (void ) src1_dd;
9238+ }
9239+
9240+ static void ggml_cuda_op_arange (
9241+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
9242+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
9243+
9244+ GGML_ASSERT (dst->type == GGML_TYPE_F32);
9245+
9246+ float start;
9247+ float stop;
9248+ float step;
9249+ memcpy (&start, (float *)dst->op_params + 0 , sizeof (float ));
9250+ memcpy (&stop, (float *)dst->op_params + 1 , sizeof (float ));
9251+ memcpy (&step, (float *)dst->op_params + 2 , sizeof (float ));
9252+
9253+ int64_t steps = (int64_t )ceil ((stop - start) / step);
9254+ GGML_ASSERT (ggml_nelements (dst) == steps);
9255+
9256+ arange_f32_cuda (dst_dd, dst->ne [0 ], start, step, main_stream);
9257+
9258+ (void ) src0;
9259+ (void ) src1;
9260+ (void ) src0_dd;
9261+ (void ) src1_dd;
9262+ }
9263+
9264+ static void ggml_cuda_op_timestep_embedding (
9265+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
9266+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
9267+
9268+ GGML_ASSERT (src0->type == GGML_TYPE_F32);
9269+ GGML_ASSERT (dst->type == GGML_TYPE_F32);
9270+
9271+ const int dim = dst->op_params [0 ];
9272+ const int max_period = dst->op_params [1 ];
9273+
9274+ timestep_embedding_f32_cuda (src0_dd, dst_dd, src0->ne [0 ], dst->nb [1 ], dim, max_period, main_stream);
91779275
91789276 (void ) src1;
91799277 (void ) dst;
@@ -10458,6 +10556,45 @@ static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, gg
1045810556 ggml_cuda_op_flatten (src0, src1, dst, ggml_cuda_op_pad);
1045910557}
1046010558
10559+ static void ggml_cuda_arange (const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
10560+ ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra ;
10561+
10562+ const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
10563+
10564+ // dd = data device
10565+ float * src0_ddf = nullptr ;
10566+ float * src1_ddf = nullptr ;
10567+ float * dst_ddf = nullptr ;
10568+
10569+ cuda_pool_alloc<float > dst_f;
10570+
10571+ ggml_cuda_set_device (g_main_device);
10572+ cudaStream_t main_stream = g_cudaStreams[g_main_device][0 ];
10573+
10574+ if (dst_on_device) {
10575+ dst_ddf = (float *) dst_extra->data_device [g_main_device];
10576+ } else {
10577+ dst_ddf = dst_f.alloc (ggml_nelements (dst));
10578+ }
10579+
10580+ // do the computation
10581+ ggml_cuda_op_arange (src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
10582+ CUDA_CHECK (cudaGetLastError ());
10583+
10584+ // copy dst to host if necessary
10585+ if (!dst_on_device) {
10586+ CUDA_CHECK (cudaMemcpyAsync (dst->data , dst_ddf, ggml_nbytes (dst), cudaMemcpyDeviceToHost, main_stream));
10587+ }
10588+
10589+ if (dst->backend == GGML_BACKEND_TYPE_CPU) {
10590+ CUDA_CHECK (cudaDeviceSynchronize ());
10591+ }
10592+ }
10593+
10594+ static void ggml_cuda_timestep_embedding (const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
10595+ ggml_cuda_op_flatten (src0, src1, dst, ggml_cuda_op_timestep_embedding);
10596+ }
10597+
1046110598static void ggml_cuda_rms_norm (const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
1046210599 ggml_cuda_op_flatten (src0, src1, dst, ggml_cuda_op_rms_norm);
1046310600}
@@ -11358,6 +11495,12 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
1135811495 case GGML_OP_PAD:
1135911496 func = ggml_cuda_pad;
1136011497 break ;
11498+ case GGML_OP_ARANGE:
11499+ func = ggml_cuda_arange;
11500+ break ;
11501+ case GGML_OP_TIMESTEP_EMBEDDING:
11502+ func = ggml_cuda_timestep_embedding;
11503+ break ;
1136111504 case GGML_OP_LEAKY_RELU:
1136211505 func = ggml_cuda_leaky_relu;
1136311506 break ;
@@ -12253,6 +12396,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
1225312396 case GGML_OP_GROUP_NORM:
1225412397 case GGML_OP_UPSCALE:
1225512398 case GGML_OP_PAD:
12399+ case GGML_OP_ARANGE:
12400+ case GGML_OP_TIMESTEP_EMBEDDING:
1225612401 case GGML_OP_LEAKY_RELU:
1225712402 return true ;
1225812403 default :
0 commit comments