|
| 1 | +import pytest |
| 2 | +import torch |
| 3 | +from pytest_mock import MockerFixture |
| 4 | +from transformers import PretrainedConfig |
| 5 | +from vllm.config import CacheConfig, ModelConfig, VllmConfig |
| 6 | + |
| 7 | +from tests.ut.base import PytestBase |
| 8 | +from vllm_ascend.models.deepseek_mtp import ( |
| 9 | + CustomDeepSeekMTP, CustomDeepSeekMultiTokenPredictor, |
| 10 | + CustomDeepSeekMultiTokenPredictorLayer) |
| 11 | + |
| 12 | + |
| 13 | +class TestCustomDeepSeekMultiTokenPredictorLayer(PytestBase): |
| 14 | + |
| 15 | + @pytest.fixture |
| 16 | + def setup_mtp_layer(self, mocker: MockerFixture): |
| 17 | + config = PretrainedConfig(vocab_size=1000, |
| 18 | + hidden_size=768, |
| 19 | + rms_norm_eps=1e-5) |
| 20 | + mocker.patch( |
| 21 | + "vllm.model_executor.layers.vocab_parallel_embedding.VocabParallelEmbedding.__init__", |
| 22 | + return_value=None) |
| 23 | + mocker.patch("vllm.model_executor.layers.layernorm.RMSNorm.__init__", |
| 24 | + return_value=None) |
| 25 | + mocker.patch( |
| 26 | + "vllm.model_executor.models.deepseek_mtp.SharedHead.__init__", |
| 27 | + return_value=None) |
| 28 | + mocker.patch( |
| 29 | + "vllm_ascend.models.deepseek_mtp.CustomDeepSeekShareHead.__init__", |
| 30 | + return_value=None) |
| 31 | + mocker_deepseek_v2_decode_layer = mocker.patch( |
| 32 | + "vllm_ascend.models.deepseek_v2.CustomDeepseekV2DecoderLayer.__init__", |
| 33 | + return_value=None) |
| 34 | + |
| 35 | + mtp_layer = CustomDeepSeekMultiTokenPredictorLayer(config, "", None) |
| 36 | + mocker_deepseek_v2_decode_layer.assert_called_once() |
| 37 | + return mtp_layer |
| 38 | + |
| 39 | + def test_init(self, mocker: MockerFixture, setup_mtp_layer): |
| 40 | + mtp_layer = setup_mtp_layer |
| 41 | + assert isinstance(mtp_layer, CustomDeepSeekMultiTokenPredictorLayer) |
| 42 | + |
| 43 | + def test_forward(self, mocker: MockerFixture, setup_mtp_layer): |
| 44 | + mtp_layer = setup_mtp_layer |
| 45 | + mocker.patch("torch.nn.Module.__setattr__") |
| 46 | + mocker.patch("torch.nn.Module.__getattr__") |
| 47 | + mocker.patch("torch.nn.Module.__delattr__") |
| 48 | + mocker.patch.object(mtp_layer, |
| 49 | + 'eh_proj', |
| 50 | + return_value=torch.randn(2, 3, 768)) |
| 51 | + mocker.patch("torch.cat", return_value=torch.randn(2, 3, 768)) |
| 52 | + mtp_layer.mtp_block.return_value = (torch.randn(2, 3, 768), |
| 53 | + torch.randn(2, 3, 768)) |
| 54 | + |
| 55 | + input_ids = torch.tensor([[1, 2, 3], [4, 5, 6]]) |
| 56 | + positions = torch.tensor([[0, 1, 2], [0, 1, 2]]) |
| 57 | + kv_cache = torch.randn(2, 3, 768) |
| 58 | + previous_hidden_states = torch.randn(2, 3, 768) |
| 59 | + inputs_embeds = torch.tensor([[1.0, 2.0, 3.0]]) |
| 60 | + |
| 61 | + output = mtp_layer(input_ids, positions, kv_cache, None, |
| 62 | + previous_hidden_states, inputs_embeds, 0) |
| 63 | + assert output.shape == (2, 3, 768) |
| 64 | + |
| 65 | + |
| 66 | +class TestCustomDeepSeekMultiTokenPredictor(PytestBase): |
| 67 | + |
| 68 | + @pytest.fixture |
| 69 | + def setup_predictor(self, mocker: MockerFixture): |
| 70 | + mock_vllm_config = mocker.MagicMock(spec=VllmConfig) |
| 71 | + mock_model_config = mocker.MagicMock(spec=ModelConfig) |
| 72 | + mock_hf_config = mocker.MagicMock() |
| 73 | + mock_hf_config.num_hidden_layers = 12 |
| 74 | + mock_hf_config.num_nextn_predict_layers = 3 |
| 75 | + mock_hf_config.vocab_size = 30000 |
| 76 | + mock_model_config.hf_config = mock_hf_config |
| 77 | + mock_vllm_config.model_config = mock_model_config |
| 78 | + mock_vllm_config.cache_config = CacheConfig() |
| 79 | + mock_vllm_config.quant_config = mocker.MagicMock() |
| 80 | + mocker.patch( |
| 81 | + "vllm_ascend.models.deepseek_mtp.CustomDeepSeekMultiTokenPredictorLayer.__init__", |
| 82 | + return_value=None) |
| 83 | + |
| 84 | + predictor = CustomDeepSeekMultiTokenPredictor( |
| 85 | + vllm_config=mock_vllm_config) |
| 86 | + return predictor |
| 87 | + |
| 88 | + def test_init(self, mocker: MockerFixture, setup_predictor): |
| 89 | + predictor = setup_predictor |
| 90 | + assert predictor.num_mtp_layers == 3 |
| 91 | + assert isinstance(predictor, CustomDeepSeekMultiTokenPredictor) |
| 92 | + |
| 93 | + @pytest.mark.parametrize('kv_caches, inputs_embeds', [ |
| 94 | + (torch.tensor([[[0.1, 0.2, 0.3]]]), torch.tensor([[0.1, 0.2, 0.3]])), |
| 95 | + (None, None), |
| 96 | + ]) |
| 97 | + def test_forward(self, mocker: MockerFixture, setup_predictor, kv_caches, |
| 98 | + inputs_embeds): |
| 99 | + predictor = setup_predictor |
| 100 | + mock_layer = mocker.MagicMock() |
| 101 | + mock_layer.return_value = torch.tensor([1.0, 2.0, 3.0]) |
| 102 | + predictor.layers_list = [mock_layer] |
| 103 | + |
| 104 | + # todo: need or not? |
| 105 | + # predictor.num_mtp_layers = 1 |
| 106 | + input_ids = torch.tensor([[1, 2, 3]]) |
| 107 | + positions = torch.tensor([[0, 1, 2]]) |
| 108 | + mocker.patch( |
| 109 | + "vllm_ascend.models.deepseek_mtp.CustomDeepSeekMultiTokenPredictorLayer.__call__", |
| 110 | + return_value=torch.tensor([[1.0, 2.0, 3.0]])) |
| 111 | + output = predictor.forward(input_ids, positions, kv_caches, None, None, |
| 112 | + inputs_embeds, 0) |
| 113 | + mock_layer.assert_called_once() |
| 114 | + assert torch.allclose(output, torch.tensor([1.0, 2.0, 3.0])) |
| 115 | + |
| 116 | + def test_compute_logits(self, mocker: MockerFixture, setup_predictor): |
| 117 | + hidden_states = torch.tensor([[1, 2, 3], [4, 5, 6]]) |
| 118 | + predictor = setup_predictor |
| 119 | + |
| 120 | + mock_layer = mocker.MagicMock() |
| 121 | + mock_layer.return_value = torch.tensor([1.0, 2.0, 3.0]) |
| 122 | + predictor.layers_list = [mock_layer] |
| 123 | + mocker.patch("torch.nn.Module.__setattr__") |
| 124 | + mocker.patch("torch.nn.Module.__getattr__") |
| 125 | + mocker.patch("torch.nn.Module.__delattr__") |
| 126 | + mocker.patch( |
| 127 | + "vllm.model_executor.layers.logits_processor.LogitsProcessor.__init__", |
| 128 | + return_value=None) |
| 129 | + predictor.logits_processor.return_value = torch.tensor([1.0, 2.0, 3.0]) |
| 130 | + |
| 131 | + result_logits = predictor.compute_logits(hidden_states=hidden_states, |
| 132 | + sampling_metadata=None) |
| 133 | + predictor.logits_processor.assert_called_once() |
| 134 | + assert torch.allclose(result_logits, torch.tensor([1.0, 2.0, 3.0])) |
| 135 | + |
| 136 | + |
| 137 | +class TestCustomDeepSeekMTP(PytestBase): |
| 138 | + |
| 139 | + @pytest.fixture |
| 140 | + def setup_mtp(self, mocker: MockerFixture): |
| 141 | + vllm_config = mocker.MagicMock() |
| 142 | + vllm_config.model_config.hf_config.num_hidden_layers = 12 |
| 143 | + vllm_config.model_config.hf_config.num_nextn_predict_layers = 3 |
| 144 | + vllm_config.cache_config = mocker.MagicMock() |
| 145 | + vllm_config.quant_config = mocker.MagicMock() |
| 146 | + |
| 147 | + mocker.patch("torch.nn.Module.__setattr__") |
| 148 | + mocker.patch("torch.nn.Module.__getattr__") |
| 149 | + mocker.patch("torch.nn.Module.__delattr__") |
| 150 | + mocker.patch( |
| 151 | + "vllm_ascend.models.deepseek_mtp.CustomDeepSeekMultiTokenPredictorLayer.__call__", |
| 152 | + return_value=None) |
| 153 | + mocker.patch("vllm.model_executor.layers.sampler.get_sampler", |
| 154 | + return_value=None) |
| 155 | + |
| 156 | + mtp = CustomDeepSeekMTP(vllm_config=vllm_config) |
| 157 | + return mtp |
| 158 | + |
| 159 | + def test_init(self, mocker: MockerFixture, setup_mtp): |
| 160 | + mtp = setup_mtp |
| 161 | + assert isinstance(mtp, CustomDeepSeekMTP) |
| 162 | + |
| 163 | + def test_forward(self, mocker: MockerFixture, setup_mtp): |
| 164 | + input_ids = torch.tensor([[1, 2, 3]]) |
| 165 | + positions = torch.tensor([[0, 1, 2]]) |
| 166 | + kv_caches = [torch.tensor([[0.1, 0.2, 0.3]])] |
| 167 | + previous_hidden_states = torch.tensor([[0.1, 0.2, 0.3]]) |
| 168 | + inputs_embeds = torch.tensor([[0.1, 0.2, 0.3]]) |
| 169 | + spec_step_idx = 0 |
| 170 | + setup_mtp.model.return_value = torch.tensor([[1.0, 2.0, 3.0]]) |
| 171 | + |
| 172 | + output = setup_mtp.forward(input_ids, positions, kv_caches, None, |
| 173 | + previous_hidden_states, inputs_embeds, |
| 174 | + spec_step_idx) |
| 175 | + assert torch.allclose(output, torch.tensor([[1.0, 2.0, 3.0]])) |
0 commit comments