|
1 | 1 | import logging |
2 | 2 | import os |
3 | | -import unittest |
| 3 | +from difflib import SequenceMatcher, unified_diff |
4 | 4 | from pathlib import Path |
5 | 5 |
|
6 | 6 | import pytest |
7 | | -import requests |
8 | | - |
9 | | -from unstract.llmwhisperer import LLMWhispererClient |
10 | 7 |
|
11 | 8 | logger = logging.getLogger(__name__) |
12 | 9 |
|
@@ -40,79 +37,38 @@ def test_get_usage_info(client): |
40 | 37 | ) |
41 | 38 | def test_whisper(client, data_dir, processing_mode, output_mode, input_file): |
42 | 39 | file_path = os.path.join(data_dir, input_file) |
43 | | - response = client.whisper( |
| 40 | + whisper_result = client.whisper( |
44 | 41 | processing_mode=processing_mode, |
45 | 42 | output_mode=output_mode, |
46 | 43 | file_path=file_path, |
47 | 44 | timeout=200, |
48 | 45 | ) |
49 | | - logger.debug(response) |
| 46 | + logger.debug(whisper_result) |
50 | 47 |
|
51 | 48 | exp_basename = f"{Path(input_file).stem}.{processing_mode}.{output_mode}.txt" |
52 | 49 | exp_file = os.path.join(data_dir, "expected", exp_basename) |
53 | | - with open(exp_file, encoding="utf-8") as f: |
54 | | - exp = f.read() |
55 | 50 |
|
56 | | - assert isinstance(response, dict) |
57 | | - assert response["status_code"] == 200 |
58 | | - assert response["extracted_text"] == exp |
| 51 | + assert_extracted_text(exp_file, whisper_result, processing_mode, output_mode) |
59 | 52 |
|
60 | 53 |
|
61 | | -# TODO: Review and port to pytest based tests |
62 | | -class TestLLMWhispererClient(unittest.TestCase): |
63 | | - @unittest.skip("Skipping test_whisper") |
64 | | - def test_whisper(self): |
65 | | - client = LLMWhispererClient() |
66 | | - # response = client.whisper( |
67 | | - # url="https://storage.googleapis.com/pandora-static/samples/bill.jpg.pdf" |
68 | | - # ) |
69 | | - response = client.whisper( |
70 | | - file_path="test_data/restaurant_invoice_photo.pdf", |
71 | | - timeout=200, |
72 | | - store_metadata_for_highlighting=True, |
73 | | - ) |
74 | | - print(response) |
75 | | - # self.assertIsInstance(response, dict) |
| 54 | +def assert_extracted_text(file_path, whisper_result, mode, output_mode): |
| 55 | + with open(file_path, encoding="utf-8") as f: |
| 56 | + exp = f.read() |
76 | 57 |
|
77 | | - # @unittest.skip("Skipping test_whisper") |
78 | | - def test_whisper_stream(self): |
79 | | - client = LLMWhispererClient() |
80 | | - download_url = "https://storage.googleapis.com/pandora-static/samples/bill.jpg.pdf" |
81 | | - # Create a stream of download_url and pass it to whisper |
82 | | - response_download = requests.get(download_url, stream=True) |
83 | | - response_download.raise_for_status() |
84 | | - response = client.whisper( |
85 | | - stream=response_download.iter_content(chunk_size=1024), |
86 | | - timeout=200, |
87 | | - store_metadata_for_highlighting=True, |
88 | | - ) |
89 | | - print(response) |
90 | | - # self.assertIsInstance(response, dict) |
| 58 | + assert isinstance(whisper_result, dict) |
| 59 | + assert whisper_result["status_code"] == 200 |
91 | 60 |
|
92 | | - @unittest.skip("Skipping test_whisper_status") |
93 | | - def test_whisper_status(self): |
94 | | - client = LLMWhispererClient() |
95 | | - response = client.whisper_status(whisper_hash="7cfa5cbb|5f1d285a7cf18d203de7af1a1abb0a3a") |
96 | | - logger.info(response) |
97 | | - self.assertIsInstance(response, dict) |
| 61 | + # For OCR based processing |
| 62 | + threshold = 0.97 |
98 | 63 |
|
99 | | - @unittest.skip("Skipping test_whisper_retrieve") |
100 | | - def test_whisper_retrieve(self): |
101 | | - client = LLMWhispererClient() |
102 | | - response = client.whisper_retrieve(whisper_hash="7cfa5cbb|5f1d285a7cf18d203de7af1a1abb0a3a") |
103 | | - logger.info(response) |
104 | | - self.assertIsInstance(response, dict) |
| 64 | + # For text based processing |
| 65 | + if mode == "native_text" and output_mode == "text": |
| 66 | + threshold = 0.99 |
| 67 | + extracted_text = whisper_result["extracted_text"] |
| 68 | + similarity = SequenceMatcher(None, extracted_text, exp).ratio() |
105 | 69 |
|
106 | | - @unittest.skip("Skipping test_whisper_highlight_data") |
107 | | - def test_whisper_highlight_data(self): |
108 | | - client = LLMWhispererClient() |
109 | | - response = client.highlight_data( |
110 | | - whisper_hash="9924d865|5f1d285a7cf18d203de7af1a1abb0a3a", |
111 | | - search_text="Indiranagar", |
| 70 | + if similarity < threshold: |
| 71 | + diff = "\n".join( |
| 72 | + unified_diff(exp.splitlines(), extracted_text.splitlines(), fromfile="Expected", tofile="Extracted") |
112 | 73 | ) |
113 | | - logger.info(response) |
114 | | - self.assertIsInstance(response, dict) |
115 | | - |
116 | | - |
117 | | -if __name__ == "__main__": |
118 | | - unittest.main() |
| 74 | + pytest.fail(f"Texts are not similar enough: {similarity * 100:.2f}% similarity. Diff:\n{diff}") |
0 commit comments