Skip to content

Commit cbc5031

Browse files
committed
Merge branch 'develop' of github.com:deepmodeling/abacus-develop into symmetry-debug
2 parents 625d935 + 5366a1f commit cbc5031

File tree

773 files changed

+115477
-11452
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

773 files changed

+115477
-11452
lines changed

.github/workflows/test.yml

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,12 @@ on:
55
branches:
66
- develop
77
- tryEigen
8+
- update_MD
9+
- ABACUS_2.2.0_beta
10+
- deepks
11+
- planewave
12+
- pw_refactor
13+
- TDDFT
814

915
jobs:
1016
test:

CMakeLists.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -275,6 +275,7 @@ target_link_libraries(${ABACUS_BIN_NAME}
275275
ri
276276
driver
277277
xc
278+
esolver
278279
-lm
279280
)
280281

doc/examples/band-struc.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
This example shows how to calculate the energy band structure. Similar to the [DOS case](#dos.md), we first, do a ground-state energy calculation as in [this example](#basic-lcao.md) ***with one additional keyword in the INPUT file***:
66

77
```
8-
out_charge 1
8+
out_chg 1
99
```
1010

1111
this will produce the converged charge density, which is contained in the file SPIN1_CHG. Copy the file along with the `STRU` file, the pseudopotential file and the atomic orbital file (and the local density matrix file onsite.dm if DFT+U is used) to the new working directory where we will do a non-self-consistent calculation. In this example, the potential is constructed from the ground-state charge density from the proceeding calculation. Now the INPUT file is like:
@@ -20,17 +20,17 @@ read_file_dir ./
2020
2121
#Parameters (Accuracy)
2222
ecutwfc 60
23-
niter 50
24-
dr2 1.0e-9
25-
ethr 1.0e-7
23+
scf_nmax 50
24+
scf_thr 1.0e-9
25+
pw_diag_thr 1.0e-7
2626
2727
#Parameters (File)
28-
start_charge file
28+
init_chg file
2929
out_band 1
3030
3131
#Parameters (Smearing)
32-
smearing gaussian
33-
sigma 0.02
32+
smearing_method gaussian
33+
smearing_sigma 0.02
3434
```
3535

3636
Here the the relevant k-point file KPT looks like,

doc/examples/basic-lcao.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ basis:
5252
---------------------------------------------------------
5353
SELF-CONSISTENT :
5454
---------------------------------------------------------
55-
ITER ETOT(eV) EDIFF(eV) DRHO2 TIME(s)
55+
ITER ETOT(eV) EDIFF(eV) SCF_THR TIME(s)
5656
GE1 -2.138667e+02 0.000000e+00 1.652e-01 4.690e+00
5757
GE2 -2.139153e+02 -4.859216e-02 3.480e-02 4.970e+00
5858
GE3 -2.139161e+02 -8.407097e-04 4.131e-03 4.760e+00

doc/examples/basic-pw.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -15,9 +15,9 @@ For this example, the input files are:
1515
basis_type pw
1616
suffix Si2_diamond
1717
symmetry 1
18-
niter 60
19-
dr2 1.0e-9
20-
out_charge 1
18+
scf_nmax 60
19+
scf_thr 1.0e-9
20+
out_chg 1
2121
```
2222
2323
The meanings of the above parameters are:
@@ -48,11 +48,11 @@ For this example, the input files are:
4848
4949
Use symmetry(=1) or not(=0) in the calculation. The default value is 0.
5050
51-
- niter
51+
- scf_nmax
5252
The maximal iteration number for electronic-structure calculations.
53-
- dr2
53+
- scf_thr
5454
Tolerance of the difference of charge density, below which the self-consistent calculation is considered to be converged.
55-
- out_charge
55+
- out_chg
5656
Print out the charge density(=1) or not(=0).
5757
5858
A complete list of INPUT keyewords can be found in the [instruction](../input-main.md).
@@ -131,7 +131,7 @@ The following typical output information will be printed to the screen:
131131
-------------------------------------------
132132
SELF-CONSISTENT :
133133
-------------------------------------------
134-
ITER ETOT(eV) EDIFF(eV) DRHO2 CG_ITER TIME(S)
134+
ITER ETOT(eV) EDIFF(eV) SCF_THR CG_ITER TIME(S)
135135
CG1 -2.154524e+02 0.000000e+00 6.855e-02 1.000e+00 1.290e+00
136136
CG2 -2.154992e+02 -4.673475e-02 2.378e-03 2.000e+00 8.400e-01
137137
CG3 -2.155050e+02 -5.882715e-03 8.220e-05 2.594e+00 9.000e-01

doc/examples/berry-phase.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -25,14 +25,14 @@ suffix PbTiO3
2525
ntype 3
2626
nbands 25 // number of bands
2727
ecutwfc 50 // Ry
28-
niter 20
28+
scf_nmax 20
2929
symmetry 0 // turn off symmetry
30-
ethr 1e-10
31-
smearing gaussian // gaussian smearing
32-
sigma 0.002 // Ry
30+
pw_diag_thr 1e-10
31+
smearing_method gaussian // gaussian smearing
32+
smearing_sigma 0.002 // Ry
3333
calculation nscf // non-self-consistent calculation
3434
basis_type lcao // atomic basis
35-
start_charge file // read charge from files
35+
init_chg file // read charge from files
3636
berry_phase 1 // calculate Berry phase
3737
gdir 3 // calculate polarization along c axis
3838
```

doc/examples/dispersion.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -25,18 +25,18 @@ Below is an example using DFT + dispersion calculation:
2525
INPUT_PARAMETERS
2626
ntype 2
2727
ecutwfc 20
28-
dr2 1e-06
29-
niter 400
28+
scf_thr 1e-06
29+
scf_nmax 400
3030
basis_type lcao
3131
ks_solver genelpa
32-
smearing gaussian
33-
sigma 0.02
32+
smearing_method gaussian
33+
smearing_sigma 0.02
3434
mixing_type pulay
3535
mixing_beta 0.4
3636
vdw_method d2
3737
calculation scf
38-
force 1
39-
stress 1
38+
cal_force 1
39+
cal_stress 1
4040
```
4141

4242
- STRU:
@@ -125,7 +125,7 @@ The files (`Sn_ONCV_PBE-1.0.upf`,`Te_ONCV_PBE-1.0.upf`,`Sn_pbe_9.0au_100Ry_2s2p2
125125
---------------------------------------------------------
126126
SELF-CONSISTENT :
127127
---------------------------------------------------------
128-
ITER ETOT(eV) EDIFF(eV) DRHO2 TIME(s)
128+
ITER ETOT(eV) EDIFF(eV) SCF_THR TIME(s)
129129
GE1 -4.263615e+03 0.000000e+00 1.030e-01 1.030e+00
130130
GE2 -4.262783e+03 8.325232e-01 6.041e-02 1.010e+00
131131
GE3 -4.262610e+03 1.722243e-01 2.263e-02 1.040e+00

doc/examples/dos.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
The main task of this example is to calculate the density of states (DOS) of the system. At first, do a ground-state energy calculation as in [this example](#basic-lcao.md) ***with one additional keyword in the INPUT file***:
66

77
```
8-
out_charge 1
8+
out_chg 1
99
```
1010

1111
this will produce the converged charge density, which is contained in the file SPIN1_CHG. Copy the file along with the `STRU` file, the pseudopotential file and the atomic orbital file (and the local density matrix file onsite.dm if DFT+U is used) to the new working directory where we will do a non-self-consistent calculation. In this example, the potential is constructed from the ground-state charge density from the proceeding calculation. Now the INPUT file is like:
@@ -22,18 +22,18 @@ read_file_dir ./
2222
#Parameters (Accuracy)
2323
ecutwfc 60
2424
symmetry 1
25-
niter 50
26-
dr2 1.0e-9
27-
ethr 1.0e-7
25+
scf_nmax 50
26+
scf_thr 1.0e-9
27+
pw_diag_thr 1.0e-7
2828
2929
#Parameters (File)
30-
start_charge file
30+
init_chg file
3131
out_dos 1
3232
dos_sigma 0.07
3333
3434
#Parameters (Smearing)
35-
smearing gaussian
36-
sigma 0.02
35+
smearing_method gaussian
36+
smearing_sigma 0.02
3737
3838
```
3939

@@ -42,12 +42,12 @@ Some parameters in the INPUT file are explained:
4242

4343
choose which kind of calculation: scf calculation, nscf calculation, structure relaxation or Molecular Dynamics. Now we need to do one step of nscf calculation.
4444
Attention: This is a main variable of ABACUS, and for its more information please see the [list of input variables](../input-main.md).
45-
- ethr
45+
- pw_diag_thr
4646

47-
threshold for the CG method which diagonalizes the Hamiltonian to get eigenvalues and eigen wave functions. If one wants to do nscf calculation, ethr needs to be changed to a smaller account, typically smaller than 1.0e-3. Note that this parameter only apply to plane-wave calculations that employ the CG method to diagonalize the Hamiltonian.
47+
threshold for the CG method which diagonalizes the Hamiltonian to get eigenvalues and eigen wave functions. If one wants to do nscf calculation, pw_diag_thr needs to be changed to a smaller account, typically smaller than 1.0e-3. Note that this parameter only apply to plane-wave calculations that employ the CG method to diagonalize the Hamiltonian.
4848

4949
For LCAO calculations, this parameter will be neglected !
50-
- start_charge
50+
- init_chg
5151

5252
the type of starting density. When doing scf calculation, this variable can be set ”atomic”. When doing nscf calculation, the charge density already exists(eg. in SPIN1_CHG), and the variable should be set as ”file”. It means the density will be read from the existing file SPIN1_CHG. For more information please see the [list of input variables](../input-main.md).
5353

doc/examples/force.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
# Force calculation and structure relaxation
22
[back to main page](../../README.md)
33

4-
To calculate the atomic forces for a given structure without ion relaxation, set ‘calculation’ to ‘scf’, set input parameter ‘force’ to 1.
4+
To calculate the atomic forces for a given structure without ion relaxation, set ‘calculation’ to ‘scf’, set input parameter ‘cal_force’ to 1.
55

66
```
77
calculation scf
8-
force 1
8+
cal_force 1
99
```
1010

1111
To relax the atom position without change cell shape, one needs to add a few more parameters
@@ -15,23 +15,23 @@ default.
1515
```
1616
calculation relax
1717
gamma_only 1
18-
nstep 100
18+
relax_nmax 100
1919
force_thr_ev 0.01
20-
move_method cg
20+
relax_method cg
2121
out_stru 1
22-
trust_radius_ini 0.5
22+
relax_bfgs_init 0.5
2323
```
2424

2525
- `calculation` relax
2626

2727
relax atom positions with fixed lattice vectors.
28-
- `nstep`
28+
- `relax_nmax`
2929

3030
the maximal number of ionic iteration steps.
3131
- `force_thr_ev`
3232

3333
the threshold for the force, below which the geometry relaxation is considered to be converged. The unit is eV/Angstrom.
34-
- `move_method`
34+
- `relax_method`
3535

3636
the algorithm used for geometry optimization. Possible choices are:
3737
- `cg`
@@ -44,7 +44,7 @@ trust_radius_ini 0.5
4444

4545
- `cg_bfgs`
4646

47-
A mixed cg-bfgs method. For detail description, check out the variable cg_threshold in the [list of input keywords](../input-main.md#cg-threshold).
47+
A mixed cg-bfgs method. For detail description, check out the variable relax_cg_thr in the [list of input keywords](../input-main.md#cg-threshold).
4848

4949
- `sd`
5050

@@ -54,7 +54,7 @@ trust_radius_ini 0.5
5454

5555
output the structure of each step or not.
5656

57-
- `trust_radius_ini`
57+
- `relax_bfgs_init`
5858

5959
the initial radius of the relaxation. We advise you not to change this parameter, unless you are sure that the initial structure is close to the final structure.
6060

doc/examples/md.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -17,22 +17,22 @@ gamma_only 1
1717
calculation md
1818
symmetry 0
1919
20-
nstep 10
2120
out_level m
22-
move_method cg
21+
relax_method cg
2322
24-
smearing gaussian
25-
sigma 0.02
23+
smearing_method gaussian
24+
smearing_sigma 0.02
2625
#Parameters (3.PW)
2726
ecutwfc 30
28-
dr2 1e-5
29-
niter 100
27+
scf_thr 1e-5
28+
scf_nmax 100
3029
3130
#Parameters (5.LCAO)
3231
basis_type lcao
3332
mixing_beta 0.4
34-
charge_extrap second-order
33+
chg_extrap second-order
3534
35+
md_nstep 10 // md steps
3636
md_type 1 //choose ensemble
3737
md_dt 1 //time step
3838
md_tfirst 700 //the first target temperature

0 commit comments

Comments
 (0)