|
| 1 | +[ |
| 2 | + { |
| 3 | + "type": "pypi", |
| 4 | + "namespace": null, |
| 5 | + "name": "ForeTiS", |
| 6 | + "version": "0.0.7", |
| 7 | + "qualifiers": {}, |
| 8 | + "subpath": null, |
| 9 | + "primary_language": "Python", |
| 10 | + "description": "state-of-the-art and easy-to-use time series forecasting\n<div align=\"left\"><img src=\"https://raw.githubusercontent.com/grimmlab/ForeTiS/master/docs/image/Logo_ForeTiS_Text.png\" height=\"80\"/></div>\n\n# ForeTiS: A Forecasting Time Series framework\n\n[](https://www.python.org/downloads/release/python-388/)\n\nForeTiS is a Python framework that enables the rigorous training, comparison and analysis of time series forecasting for a variety of different models. \nForeTiS includes multiple state-of-the-art prediction models or machine learning methods, respectively. \nThese range from classical models, such as regularized linear regression over ensemble learners, e.g. XGBoost, to deep learning-based architectures, such as Multilayer Perceptron (MLP). \nTo enable automatic hyperparameter optimization, we leverage state-of-the-art and efficient Bayesian optimization techniques. \nIn addition, our framework is designed to allow an easy and straightforward integration and benchmarking of further prediction models.\n\n## Documentation\nFor more information, installation guides, tutorials and much more, see our documentation: https://foretis.readthedocs.io/\n\n## Contributors\nThis pipeline is developed and maintained by members of the [Bioinformatics lab](https://bit.cs.tum.de) lead by [Prof. Dr. Dominik Grimm](https://bit.cs.tum.de/team/dominik-grimm/):\n- [Josef Eiglsperger, M.Sc.](https://bit.cs.tum.de/team/josef-eiglsperger/)\n- [Florian Haselbeck, M.Sc.](https://bit.cs.tum.de/team/florian-haselbeck/)\n\n## Citation\nWhen using ForeTiS, please cite our publication:\n\n**ForeTiS: A comprehensive time series forecasting framework in Python.** <br />\nJosef Eiglsperger*, Florian Haselbeck* and Dominik G. Grimm. <br />\n*Machine Learning with Applications, 2023.* [doi: 10.1016/j.mlwa.2023.100467](https://doi.org/10.1016/j.mlwa.2023.100467) <br />\n**These authors have contributed equally to this work and share first authorship.* <br />", |
| 11 | + "release_date": null, |
| 12 | + "parties": [ |
| 13 | + { |
| 14 | + "type": "person", |
| 15 | + "role": "author", |
| 16 | + "name": "Josef Eiglsperger, Florian Haselbeck; Dominik G. Grimm", |
| 17 | + |
| 18 | + "url": null |
| 19 | + } |
| 20 | + ], |
| 21 | + "keywords": [ |
| 22 | + "Development Status :: 2 - Pre-Alpha", |
| 23 | + "Intended Audience :: Science/Research", |
| 24 | + "Operating System :: POSIX :: Linux", |
| 25 | + "Programming Language :: Python :: 3", |
| 26 | + "Topic :: Scientific/Engineering :: Artificial Intelligence" |
| 27 | + ], |
| 28 | + "homepage_url": "https://github.com/grimmlab/ForeTiS", |
| 29 | + "download_url": null, |
| 30 | + "size": null, |
| 31 | + "sha1": null, |
| 32 | + "md5": null, |
| 33 | + "sha256": null, |
| 34 | + "sha512": null, |
| 35 | + "bug_tracking_url": null, |
| 36 | + "code_view_url": "https://github.com/grimmlab/ForeTiS", |
| 37 | + "vcs_url": null, |
| 38 | + "copyright": null, |
| 39 | + "holder": null, |
| 40 | + "declared_license_expression": "mit", |
| 41 | + "declared_license_expression_spdx": "MIT", |
| 42 | + "license_detections": [ |
| 43 | + { |
| 44 | + "license_expression": "mit", |
| 45 | + "license_expression_spdx": "MIT", |
| 46 | + "matches": [ |
| 47 | + { |
| 48 | + "license_expression": "mit", |
| 49 | + "license_expression_spdx": "MIT", |
| 50 | + "from_file": null, |
| 51 | + "start_line": 1, |
| 52 | + "end_line": 1, |
| 53 | + "matcher": "1-spdx-id", |
| 54 | + "score": 100.0, |
| 55 | + "matched_length": 1, |
| 56 | + "match_coverage": 100.0, |
| 57 | + "rule_relevance": 100, |
| 58 | + "rule_identifier": "spdx-license-identifier-mit-5da48780aba670b0860c46d899ed42a0f243ff06", |
| 59 | + "rule_url": null, |
| 60 | + "matched_text": "MIT" |
| 61 | + } |
| 62 | + ], |
| 63 | + "identifier": "mit-a822f434-d61f-f2b1-c792-8b8cb9e7b9bf" |
| 64 | + }, |
| 65 | + { |
| 66 | + "license_expression": "mit", |
| 67 | + "license_expression_spdx": "MIT", |
| 68 | + "matches": [ |
| 69 | + { |
| 70 | + "license_expression": "mit", |
| 71 | + "license_expression_spdx": "MIT", |
| 72 | + "from_file": null, |
| 73 | + "start_line": 1, |
| 74 | + "end_line": 1, |
| 75 | + "matcher": "1-hash", |
| 76 | + "score": 100.0, |
| 77 | + "matched_length": 5, |
| 78 | + "match_coverage": 100.0, |
| 79 | + "rule_relevance": 100, |
| 80 | + "rule_identifier": "pypi_mit_license.RULE", |
| 81 | + "rule_url": "https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules/pypi_mit_license.RULE", |
| 82 | + "matched_text": "- 'License :: OSI Approved :: MIT License'" |
| 83 | + } |
| 84 | + ], |
| 85 | + "identifier": "mit-24a5293c-14d7-5403-efac-1a8b7532c0e8" |
| 86 | + } |
| 87 | + ], |
| 88 | + "other_license_expression": null, |
| 89 | + "other_license_expression_spdx": null, |
| 90 | + "other_license_detections": [], |
| 91 | + "extracted_license_statement": "license: MIT\nclassifiers:\n - 'License :: OSI Approved :: MIT License'\n", |
| 92 | + "notice_text": null, |
| 93 | + "source_packages": [], |
| 94 | + "file_references": [], |
| 95 | + "is_private": false, |
| 96 | + "is_virtual": false, |
| 97 | + "extra_data": { |
| 98 | + "Documentation": "https://ForeTiS.readthedocs.io/", |
| 99 | + "license_file": "LICENSE" |
| 100 | + }, |
| 101 | + "dependencies": [ |
| 102 | + { |
| 103 | + "purl": "pkg:pypi/torch", |
| 104 | + "extracted_requirement": ">=1.11.0", |
| 105 | + "scope": "install", |
| 106 | + "is_runtime": true, |
| 107 | + "is_optional": false, |
| 108 | + "is_pinned": false, |
| 109 | + "is_direct": true, |
| 110 | + "resolved_package": {}, |
| 111 | + "extra_data": {} |
| 112 | + }, |
| 113 | + { |
| 114 | + "purl": "pkg:pypi/xgboost", |
| 115 | + "extracted_requirement": ">=1.5.2", |
| 116 | + "scope": "install", |
| 117 | + "is_runtime": true, |
| 118 | + "is_optional": false, |
| 119 | + "is_pinned": false, |
| 120 | + "is_direct": true, |
| 121 | + "resolved_package": {}, |
| 122 | + "extra_data": {} |
| 123 | + }, |
| 124 | + { |
| 125 | + "purl": "pkg:pypi/optuna", |
| 126 | + "extracted_requirement": ">=2.10.0", |
| 127 | + "scope": "install", |
| 128 | + "is_runtime": true, |
| 129 | + "is_optional": false, |
| 130 | + "is_pinned": false, |
| 131 | + "is_direct": true, |
| 132 | + "resolved_package": {}, |
| 133 | + "extra_data": {} |
| 134 | + }, |
| 135 | + { |
| 136 | + "purl": "pkg:pypi/[email protected]", |
| 137 | + "extracted_requirement": "==1.4.46", |
| 138 | + "scope": "install", |
| 139 | + "is_runtime": true, |
| 140 | + "is_optional": false, |
| 141 | + "is_pinned": true, |
| 142 | + "is_direct": true, |
| 143 | + "resolved_package": {}, |
| 144 | + "extra_data": {} |
| 145 | + }, |
| 146 | + { |
| 147 | + "purl": "pkg:pypi/joblib", |
| 148 | + "extracted_requirement": ">=1.1.0", |
| 149 | + "scope": "install", |
| 150 | + "is_runtime": true, |
| 151 | + "is_optional": false, |
| 152 | + "is_pinned": false, |
| 153 | + "is_direct": true, |
| 154 | + "resolved_package": {}, |
| 155 | + "extra_data": {} |
| 156 | + }, |
| 157 | + { |
| 158 | + "purl": "pkg:pypi/numpy", |
| 159 | + "extracted_requirement": ">=1.22.2", |
| 160 | + "scope": "install", |
| 161 | + "is_runtime": true, |
| 162 | + "is_optional": false, |
| 163 | + "is_pinned": false, |
| 164 | + "is_direct": true, |
| 165 | + "resolved_package": {}, |
| 166 | + "extra_data": {} |
| 167 | + }, |
| 168 | + { |
| 169 | + "purl": "pkg:pypi/pandas", |
| 170 | + "extracted_requirement": ">=1.4.1", |
| 171 | + "scope": "install", |
| 172 | + "is_runtime": true, |
| 173 | + "is_optional": false, |
| 174 | + "is_pinned": false, |
| 175 | + "is_direct": true, |
| 176 | + "resolved_package": {}, |
| 177 | + "extra_data": {} |
| 178 | + }, |
| 179 | + { |
| 180 | + "purl": "pkg:pypi/scikit-learn", |
| 181 | + "extracted_requirement": ">=1.0.2", |
| 182 | + "scope": "install", |
| 183 | + "is_runtime": true, |
| 184 | + "is_optional": false, |
| 185 | + "is_pinned": false, |
| 186 | + "is_direct": true, |
| 187 | + "resolved_package": {}, |
| 188 | + "extra_data": {} |
| 189 | + }, |
| 190 | + { |
| 191 | + "purl": "pkg:pypi/tensorflow", |
| 192 | + "extracted_requirement": ">=2.8.0", |
| 193 | + "scope": "install", |
| 194 | + "is_runtime": true, |
| 195 | + "is_optional": false, |
| 196 | + "is_pinned": false, |
| 197 | + "is_direct": true, |
| 198 | + "resolved_package": {}, |
| 199 | + "extra_data": {} |
| 200 | + }, |
| 201 | + { |
| 202 | + "purl": "pkg:pypi/tensorflow-probability", |
| 203 | + "extracted_requirement": ">=0.18", |
| 204 | + "scope": "install", |
| 205 | + "is_runtime": true, |
| 206 | + "is_optional": false, |
| 207 | + "is_pinned": false, |
| 208 | + "is_direct": true, |
| 209 | + "resolved_package": {}, |
| 210 | + "extra_data": {} |
| 211 | + }, |
| 212 | + { |
| 213 | + "purl": "pkg:pypi/statsmodels", |
| 214 | + "extracted_requirement": ">=0.13.2", |
| 215 | + "scope": "install", |
| 216 | + "is_runtime": true, |
| 217 | + "is_optional": false, |
| 218 | + "is_pinned": false, |
| 219 | + "is_direct": true, |
| 220 | + "resolved_package": {}, |
| 221 | + "extra_data": {} |
| 222 | + }, |
| 223 | + { |
| 224 | + "purl": "pkg:pypi/scipy", |
| 225 | + "extracted_requirement": ">=1.8.1", |
| 226 | + "scope": "install", |
| 227 | + "is_runtime": true, |
| 228 | + "is_optional": false, |
| 229 | + "is_pinned": false, |
| 230 | + "is_direct": true, |
| 231 | + "resolved_package": {}, |
| 232 | + "extra_data": {} |
| 233 | + }, |
| 234 | + { |
| 235 | + "purl": "pkg:pypi/pmdarima", |
| 236 | + "extracted_requirement": ">=2.0.1", |
| 237 | + "scope": "install", |
| 238 | + "is_runtime": true, |
| 239 | + "is_optional": false, |
| 240 | + "is_pinned": false, |
| 241 | + "is_direct": true, |
| 242 | + "resolved_package": {}, |
| 243 | + "extra_data": {} |
| 244 | + }, |
| 245 | + { |
| 246 | + "purl": "pkg:pypi/gpflow", |
| 247 | + "extracted_requirement": ">=2.5.2", |
| 248 | + "scope": "install", |
| 249 | + "is_runtime": true, |
| 250 | + "is_optional": false, |
| 251 | + "is_pinned": false, |
| 252 | + "is_direct": true, |
| 253 | + "resolved_package": {}, |
| 254 | + "extra_data": {} |
| 255 | + }, |
| 256 | + { |
| 257 | + "purl": "pkg:pypi/matplotlib", |
| 258 | + "extracted_requirement": ">=3.3.0", |
| 259 | + "scope": "install", |
| 260 | + "is_runtime": true, |
| 261 | + "is_optional": false, |
| 262 | + "is_pinned": false, |
| 263 | + "is_direct": true, |
| 264 | + "resolved_package": {}, |
| 265 | + "extra_data": {} |
| 266 | + }, |
| 267 | + { |
| 268 | + "purl": "pkg:pypi/changefinder", |
| 269 | + "extracted_requirement": ">=0.3", |
| 270 | + "scope": "install", |
| 271 | + "is_runtime": true, |
| 272 | + "is_optional": false, |
| 273 | + "is_pinned": false, |
| 274 | + "is_direct": true, |
| 275 | + "resolved_package": {}, |
| 276 | + "extra_data": {} |
| 277 | + }, |
| 278 | + { |
| 279 | + "purl": "pkg:pypi/bayesian-torch", |
| 280 | + "extracted_requirement": null, |
| 281 | + "scope": "install", |
| 282 | + "is_runtime": true, |
| 283 | + "is_optional": false, |
| 284 | + "is_pinned": false, |
| 285 | + "is_direct": true, |
| 286 | + "resolved_package": {}, |
| 287 | + "extra_data": {} |
| 288 | + }, |
| 289 | + { |
| 290 | + "purl": "pkg:pypi/blitz-bayesian-pytorch", |
| 291 | + "extracted_requirement": null, |
| 292 | + "scope": "install", |
| 293 | + "is_runtime": true, |
| 294 | + "is_optional": false, |
| 295 | + "is_pinned": false, |
| 296 | + "is_direct": true, |
| 297 | + "resolved_package": {}, |
| 298 | + "extra_data": {} |
| 299 | + }, |
| 300 | + { |
| 301 | + "purl": "pkg:pypi/tables", |
| 302 | + "extracted_requirement": ">=3.7.0", |
| 303 | + "scope": "install", |
| 304 | + "is_runtime": true, |
| 305 | + "is_optional": false, |
| 306 | + "is_pinned": false, |
| 307 | + "is_direct": true, |
| 308 | + "resolved_package": {}, |
| 309 | + "extra_data": {} |
| 310 | + } |
| 311 | + ], |
| 312 | + "repository_homepage_url": "https://pypi.org/project/ForeTiS", |
| 313 | + "repository_download_url": "https://pypi.org/packages/source/F/ForeTiS/ForeTiS-0.0.7.tar.gz", |
| 314 | + "api_data_url": "https://pypi.org/pypi/ForeTiS/0.0.7/json", |
| 315 | + "datasource_id": "pypi_sdist_pkginfo", |
| 316 | + "purl": "pkg:pypi/[email protected]" |
| 317 | + } |
| 318 | +] |
0 commit comments