|
3574 | 3574 | </paper> |
3575 | 3575 | <paper id="223"> |
3576 | 3576 | <title>A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for <fixed-case>A</fixed-case>frican News Translation</title> |
3577 | | - <author><first>David</first><last>Adelani</last></author> |
3578 | | - <author><first>Jesujoba</first><last>Alabi</last></author> |
| 3577 | + <author><first>David Ifeoluwa</first><last>Adelani</last></author> |
| 3578 | + <author><first>Jesujoba Oluwadara</first><last>Alabi</last></author> |
3579 | 3579 | <author><first>Angela</first><last>Fan</last></author> |
3580 | 3580 | <author><first>Julia</first><last>Kreutzer</last></author> |
3581 | 3581 | <author><first>Xiaoyu</first><last>Shen</last></author> |
|
3590 | 3590 | <author><first>Chris</first><last>Emezue</last></author> |
3591 | 3591 | <author><first>Colin</first><last>Leong</last></author> |
3592 | 3592 | <author><first>Michael</first><last>Beukman</last></author> |
3593 | | - <author><first>Shamsuddeen</first><last>Muhammad</last></author> |
3594 | | - <author><first>Guyo</first><last>Jarso</last></author> |
| 3593 | + <author><first>Shamsuddeen H.</first><last>Muhammad</last></author> |
| 3594 | + <author><first>Guyo D.</first><last>Jarso</last></author> |
3595 | 3595 | <author><first>Oreen</first><last>Yousuf</last></author> |
3596 | | - <author><first>Andre</first><last>Niyongabo Rubungo</last></author> |
| 3596 | + <author><first>Andre N.</first><last>Niyongabo Rubungo</last></author> |
3597 | 3597 | <author><first>Gilles</first><last>Hacheme</last></author> |
3598 | 3598 | <author><first>Eric Peter</first><last>Wairagala</last></author> |
3599 | 3599 | <author><first>Muhammad Umair</first><last>Nasir</last></author> |
3600 | | - <author><first>Benjamin</first><last>Ajibade</last></author> |
3601 | | - <author><first>Tunde</first><last>Ajayi</last></author> |
3602 | | - <author><first>Yvonne</first><last>Gitau</last></author> |
| 3600 | + <author><first>Benjamin A.</first><last>Ajibade</last></author> |
| 3601 | + <author><first>Tunde Oluwaseyi</first><last>Ajayi</last></author> |
| 3602 | + <author><first>Yvonne Wambui</first><last>Gitau</last></author> |
3603 | 3603 | <author><first>Jade</first><last>Abbott</last></author> |
3604 | 3604 | <author><first>Mohamed</first><last>Ahmed</last></author> |
3605 | 3605 | <author><first>Millicent</first><last>Ochieng</last></author> |
3606 | 3606 | <author><first>Anuoluwapo</first><last>Aremu</last></author> |
3607 | 3607 | <author><first>Perez</first><last>Ogayo</last></author> |
3608 | 3608 | <author><first>Jonathan</first><last>Mukiibi</last></author> |
3609 | 3609 | <author><first>Fatoumata</first><last>Ouoba Kabore</last></author> |
3610 | | - <author><first>Godson</first><last>Kalipe</last></author> |
| 3610 | + <author><first>Godson Koffi</first><last>Kalipe</last></author> |
3611 | 3611 | <author><first>Derguene</first><last>Mbaye</last></author> |
3612 | 3612 | <author><first>Allahsera Auguste</first><last>Tapo</last></author> |
3613 | | - <author><first>Victoire</first><last>Memdjokam Koagne</last></author> |
| 3613 | + <author><first>Victoire M.</first><last>Memdjokam Koagne</last></author> |
3614 | 3614 | <author><first>Edwin</first><last>Munkoh-Buabeng</last></author> |
3615 | 3615 | <author><first>Valencia</first><last>Wagner</last></author> |
3616 | 3616 | <author><first>Idris</first><last>Abdulmumin</last></author> |
|
7076 | 7076 | <title><fixed-case>MCSE</fixed-case>: <fixed-case>M</fixed-case>ultimodal Contrastive Learning of Sentence Embeddings</title> |
7077 | 7077 | <author><first>Miaoran</first><last>Zhang</last></author> |
7078 | 7078 | <author><first>Marius</first><last>Mosbach</last></author> |
7079 | | - <author><first>David</first><last>Adelani</last></author> |
7080 | | - <author><first>Michael</first><last>Hedderich</last></author> |
| 7079 | + <author><first>David Ifeoluwa</first><last>Adelani</last></author> |
| 7080 | + <author><first>Michael A.</first><last>Hedderich</last></author> |
7081 | 7081 | <author><first>Dietrich</first><last>Klakow</last></author> |
7082 | 7082 | <pages>5959-5969</pages> |
7083 | 7083 | <abstract>Learning semantically meaningful sentence embeddings is an open problem in natural language processing. In this work, we propose a sentence embedding learning approach that exploits both visual and textual information via a multimodal contrastive objective. Through experiments on a variety of semantic textual similarity tasks, we demonstrate that our approach consistently improves the performance across various datasets and pre-trained encoders. In particular, combining a small amount of multimodal data with a large text-only corpus, we improve the state-of-the-art average Spearman’s correlation by 1.7%. By analyzing the properties of the textual embedding space, we show that our model excels in aligning semantically similar sentences, providing an explanation for its improved performance.</abstract> |
|
0 commit comments