You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"# Intro to CV Workshop 1: Getting Started with Computer Vision"
21
-
],
22
5
"metadata": {
23
6
"id": "lrPpS1rpCK-h"
24
-
}
7
+
},
8
+
"source": [
9
+
"# Intro to CV Workshop 1: Getting Started with Computer Vision"
10
+
]
25
11
},
26
12
{
27
13
"cell_type": "markdown",
28
-
"source": [
29
-
"## Section 1 - Overview of Computer Vision\n"
30
-
],
31
14
"metadata": {
32
15
"id": "X_yXZfg-9Fa-"
33
-
}
16
+
},
17
+
"source": [
18
+
"## Section 1 - Overview of Computer Vision\n"
19
+
]
34
20
},
35
21
{
36
22
"cell_type": "markdown",
37
-
"source": [
38
-
"### 1.1 Introduction of Computer Vision\n"
39
-
],
40
23
"metadata": {
41
24
"id": "t-rte0n6Jrn5"
42
-
}
25
+
},
26
+
"source": [
27
+
"### 1.1 Introduction of Computer Vision\n"
28
+
]
43
29
},
44
30
{
31
+
"attachments": {},
45
32
"cell_type": "markdown",
33
+
"metadata": {},
46
34
"source": [
47
-
" ### 1.2 The MNIST Dataset"
48
-
],
35
+
"Welcome to Intro to Computer Vision! This will be a three part workshop series focused on building an overview of the underlying algorithms and applications of Computer Vision. For today's workshop, we'll be focusing on PyTorch - a machine learning framework used for AI applications - and neural networks - the foundational concept underlying computer vision algorithms such as CNN (Convolutional Neural Networks) that power visual imagery analysis. Let's get started!"
36
+
]
37
+
},
38
+
{
39
+
"attachments": {},
40
+
"cell_type": "markdown",
41
+
"metadata": {},
42
+
"source": [
43
+
"What is Computer Vision? \n",
44
+
"\n",
45
+
"Computer Vision is a subfield of AI that focuses on computers deriving and understanding information based on visual data - images, videos, etc"
46
+
]
47
+
},
48
+
{
49
+
"cell_type": "markdown",
49
50
"metadata": {
50
51
"id": "LAy-avyOKTPw"
51
-
}
52
+
},
53
+
"source": [
54
+
" ### 1.2 The MNIST Dataset"
55
+
]
52
56
},
53
57
{
54
58
"cell_type": "markdown",
55
-
"source": [
56
-
"## Section 2 - Basics of basics"
57
-
],
58
59
"metadata": {
59
60
"id": "TknP7gWmCJvB"
60
-
}
61
+
},
62
+
"source": [
63
+
"## Section 2 - Basics of basics"
64
+
]
61
65
},
62
66
{
63
67
"cell_type": "markdown",
64
-
"source": [
65
-
"### 2.1 Pytorch Basics"
66
-
],
67
68
"metadata": {
68
69
"id": "xClsDXlOJNZM"
69
-
}
70
+
},
71
+
"source": [
72
+
"### 2.1 Pytorch Basics"
73
+
]
70
74
},
71
75
{
72
76
"cell_type": "markdown",
73
-
"source": [
74
-
"### 2.2 Model Training and Evaluation"
75
-
],
76
77
"metadata": {
77
78
"id": "vKDff4XKJgx_"
78
-
}
79
+
},
80
+
"source": [
81
+
"### 2.2 Model Training and Evaluation"
82
+
]
79
83
},
80
84
{
81
85
"cell_type": "markdown",
82
-
"source": [
83
-
"## Section 3 - Formulating a Machine Learning problem "
84
-
],
85
86
"metadata": {
86
87
"id": "pcibKmYR_OTW"
87
-
}
88
+
},
89
+
"source": [
90
+
"## Section 3 - Formulating a Machine Learning problem "
91
+
]
88
92
},
89
93
{
90
94
"cell_type": "markdown",
91
-
"source": [
92
-
"(feel free to edit the outline)"
93
-
],
94
95
"metadata": {
95
96
"id": "tIpm_ep-K3lQ"
96
-
}
97
+
},
98
+
"source": [
99
+
"(feel free to edit the outline)"
100
+
]
97
101
},
98
102
{
99
103
"cell_type": "markdown",
100
-
"source": [
101
-
"### 3.1 Set up MLP Architecture (NN layers, activation function)\n"
102
-
],
103
104
"metadata": {
104
105
"id": "hanQrmfxCH5C"
105
-
}
106
+
},
107
+
"source": [
108
+
"### 3.1 Set up MLP Architecture (NN layers, activation function)\n"
109
+
]
106
110
},
107
111
{
108
112
"cell_type": "markdown",
109
-
"source": [
110
-
"### 3.2 Loss function and Regularization (L1/L2/Dropout)"
111
-
],
112
113
"metadata": {
113
114
"id": "k2zSw1jLKvM9"
114
-
}
115
+
},
116
+
"source": [
117
+
"### 3.2 Loss function and Regularization (L1/L2/Dropout)"
118
+
]
115
119
},
116
120
{
117
121
"cell_type": "markdown",
118
-
"source": [
119
-
"### 3.3 Learning and Evaluation (Gradient Descent, SGD)\n"
120
-
],
121
122
"metadata": {
122
123
"id": "ZAqFgipcKx6S"
123
-
}
124
+
},
125
+
"source": [
126
+
"### 3.3 Learning and Evaluation (Gradient Descent, SGD)\n"
127
+
]
124
128
},
125
129
{
126
130
"cell_type": "markdown",
127
-
"source": [
128
-
"## Section 4 - Making a MLP piece-by-piece"
129
-
],
130
131
"metadata": {
131
132
"id": "7gJNzxuBLDyv"
132
-
}
133
+
},
134
+
"source": [
135
+
"## Section 4 - Making a MLP piece-by-piece"
136
+
]
133
137
},
134
138
{
135
139
"cell_type": "markdown",
136
-
"source": [
137
-
"## Section 5 - Putting it together for CV (Can change this later)"
138
-
],
139
140
"metadata": {
140
141
"id": "tbIiaUguLUoU"
142
+
},
143
+
"source": [
144
+
"## Section 5 - Putting it together for CV (Can change this later)"
0 commit comments