Skip to content

Commit a597d10

Browse files
2 parents 149e951 + 634a603 commit a597d10

File tree

1 file changed

+39
-0
lines changed

1 file changed

+39
-0
lines changed

Fall20/NeuralNetworks4/layers.py

Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,39 @@
1+
from tensorflow.keras import Model, layers, Input
2+
import numpy as np
3+
4+
temp_im_test = np.ones((1,128,128,3))
5+
6+
input_shape_img = (128,128,3)
7+
8+
img_input = Input(shape=input_shape_img)
9+
10+
# convolutional layers with 64 neurons and (3,3) kernel each
11+
conv1_1 = layers.Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
12+
conv1_2 = layers.Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(conv1_1)
13+
14+
# maxpool2D layer with (2,2) filter and stride (2,2)
15+
max1 = layers.MaxPool2D((2, 2), strides=(2, 2), name='block1_pool')(conv1_2)
16+
17+
# globalmax layer
18+
globalmax1 = layers.GlobalMaxPool2D()(max1)
19+
20+
# flattens input to 1D array
21+
flatten1 = layers.Flatten()(globalmax1)
22+
23+
# dropout layer modifies input layer so some values become 0
24+
drop1 = layers.Dropout(.2)(flatten1)
25+
26+
# standard dense layer
27+
dense1 = layers.Dense(32)(drop1)
28+
29+
# compiles model with input: img_input and output as output from dense1
30+
model = Model(inputs = img_input, outputs= dense1)
31+
model.compile(optimizer='sgd', loss='mse')
32+
33+
# shows model
34+
model.summary()
35+
36+
# show result on one input
37+
values = model.predict(temp_im_test)
38+
print(values.shape)
39+
print(values)

0 commit comments

Comments
 (0)