|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 50, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from keras.models import Sequential\n", |
| 10 | + "from keras.layers import Dense, Flatten\n", |
| 11 | + "from keras.layers import BatchNormalization as BatchNorm\n", |
| 12 | + "from keras.utils import np_utils\n", |
| 13 | + "from keras.callbacks import ModelCheckpoint\n", |
| 14 | + "import random\n", |
| 15 | + "import tensorflow as tf" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": 48, |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [ |
| 23 | + { |
| 24 | + "name": "stdout", |
| 25 | + "output_type": "stream", |
| 26 | + "text": [ |
| 27 | + "(60000, 28, 28)\n" |
| 28 | + ] |
| 29 | + } |
| 30 | + ], |
| 31 | + "source": [ |
| 32 | + "(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(path=\"mnist.npz\")\n", |
| 33 | + "print(x_train.shape)" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": 49, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [ |
| 41 | + { |
| 42 | + "name": "stdout", |
| 43 | + "output_type": "stream", |
| 44 | + "text": [ |
| 45 | + "(42000, 28, 28) (18000, 28, 28)\n" |
| 46 | + ] |
| 47 | + } |
| 48 | + ], |
| 49 | + "source": [ |
| 50 | + "# train, validation split (70%, 30%)\n", |
| 51 | + "x_train, x_val = x_train[0:x_train.shape[0]*70//100], x_train[x_train.shape[0]*70//100:]\n", |
| 52 | + "y_train, y_val = y_train[0:y_train.shape[0]*70//100], y_train[y_train.shape[0]*70//100:]\n", |
| 53 | + "# Some other simple things you can do - Shuffle, Normalize. \n", |
| 54 | + "# Other advanced things you can do to preprocess the data - PCA, Z-score.\n", |
| 55 | + "# What other optimizations can you think of? \n", |
| 56 | + "print(x_train.shape, x_val.shape)" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": 58, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "# https://keras.io/api/layers/\n", |
| 66 | + "# Keras offers an API for a lot of layers with multiple optional parameters to tune the network.\n", |
| 67 | + "def create_network(network_input):\n", |
| 68 | + " model = Sequential()\n", |
| 69 | + " model.add(Flatten()) # Convert [28,28] -> [784,]\n", |
| 70 | + " model.add(Dense(25)) # [784,] -> [25,]\n", |
| 71 | + " model.add(Activation('relu'))\n", |
| 72 | + " model.add(Dense(10)) # [25,] -> [10,] FCC\n", |
| 73 | + " model.add(Activation('softmax'))\n", |
| 74 | + " \n", |
| 75 | + " #optimizer and loss.\n", |
| 76 | + " model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))\n", |
| 77 | + " return model\n" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": 60, |
| 83 | + "metadata": {}, |
| 84 | + "outputs": [ |
| 85 | + { |
| 86 | + "name": "stdout", |
| 87 | + "output_type": "stream", |
| 88 | + "text": [ |
| 89 | + "Epoch 1/5\n", |
| 90 | + "5250/5250 [==============================] - 3s 538us/step - loss: 3.6693\n", |
| 91 | + "Epoch 2/5\n", |
| 92 | + "5250/5250 [==============================] - 3s 534us/step - loss: 0.9733\n", |
| 93 | + "Epoch 3/5\n", |
| 94 | + "5250/5250 [==============================] - 3s 543us/step - loss: 0.7850\n", |
| 95 | + "Epoch 4/5\n", |
| 96 | + "5250/5250 [==============================] - 3s 537us/step - loss: 0.6917\n", |
| 97 | + "Epoch 5/5\n", |
| 98 | + "5250/5250 [==============================] - 3s 544us/step - loss: 0.6751\n" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "data": { |
| 103 | + "text/plain": [ |
| 104 | + "<tensorflow.python.keras.callbacks.History at 0x7fcd40099fd0>" |
| 105 | + ] |
| 106 | + }, |
| 107 | + "execution_count": 60, |
| 108 | + "metadata": {}, |
| 109 | + "output_type": "execute_result" |
| 110 | + } |
| 111 | + ], |
| 112 | + "source": [ |
| 113 | + "model = create_network(x_train)\n", |
| 114 | + "#https://keras.io/api/models/model_training_apis/\n", |
| 115 | + "#without validation\n", |
| 116 | + "model.fit(x=x_train, y=y_train, epochs=5, batch_size = 8)" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": 61, |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [ |
| 124 | + { |
| 125 | + "name": "stdout", |
| 126 | + "output_type": "stream", |
| 127 | + "text": [ |
| 128 | + "Epoch 1/5\n", |
| 129 | + "5250/5250 [==============================] - 4s 682us/step - loss: 4.4919 - val_loss: 1.3123\n", |
| 130 | + "Epoch 2/5\n", |
| 131 | + "5250/5250 [==============================] - 4s 669us/step - loss: 1.2269 - val_loss: 0.9553\n", |
| 132 | + "Epoch 3/5\n", |
| 133 | + "5250/5250 [==============================] - 4s 676us/step - loss: 0.9047 - val_loss: 0.7206\n", |
| 134 | + "Epoch 4/5\n", |
| 135 | + "5250/5250 [==============================] - 3s 666us/step - loss: 0.7218 - val_loss: 0.7201\n", |
| 136 | + "Epoch 5/5\n", |
| 137 | + "5250/5250 [==============================] - 4s 673us/step - loss: 0.6267 - val_loss: 0.6180\n" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "data": { |
| 142 | + "text/plain": [ |
| 143 | + "<tensorflow.python.keras.callbacks.History at 0x7fcd307d9070>" |
| 144 | + ] |
| 145 | + }, |
| 146 | + "execution_count": 61, |
| 147 | + "metadata": {}, |
| 148 | + "output_type": "execute_result" |
| 149 | + } |
| 150 | + ], |
| 151 | + "source": [ |
| 152 | + "model = create_network(x_train)\n", |
| 153 | + "#with validation\n", |
| 154 | + "model.fit(x=x_train, y=y_train, epochs=5, batch_size = 8, validation_data=(x_val, y_val))" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": null, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [], |
| 162 | + "source": [] |
| 163 | + } |
| 164 | + ], |
| 165 | + "metadata": { |
| 166 | + "kernelspec": { |
| 167 | + "display_name": "Python 3", |
| 168 | + "language": "python", |
| 169 | + "name": "python3" |
| 170 | + }, |
| 171 | + "language_info": { |
| 172 | + "codemirror_mode": { |
| 173 | + "name": "ipython", |
| 174 | + "version": 3 |
| 175 | + }, |
| 176 | + "file_extension": ".py", |
| 177 | + "mimetype": "text/x-python", |
| 178 | + "name": "python", |
| 179 | + "nbconvert_exporter": "python", |
| 180 | + "pygments_lexer": "ipython3", |
| 181 | + "version": "3.8.5" |
| 182 | + } |
| 183 | + }, |
| 184 | + "nbformat": 4, |
| 185 | + "nbformat_minor": 4 |
| 186 | +} |
0 commit comments