|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "# Import all the necessary libraries\n", |
| 10 | + "import numpy as np\n", |
| 11 | + "import torch.nn as nn\n", |
| 12 | + "import torch.nn.functional as F\n", |
| 13 | + "import torch\n", |
| 14 | + "import torchvision\n", |
| 15 | + "import matplotlib.pyplot as plt\n", |
| 16 | + "from tqdm import notebook" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "class Generator(nn.Module):\n", |
| 26 | + " def __init__(self, latent_shape, img_shape):\n", |
| 27 | + " super(Generator, self).__init__()\n", |
| 28 | + " self.img_shape = img_shape\n", |
| 29 | + " self.flatten = nn.Flatten()\n", |
| 30 | + " self.mlp = nn.Sequential(\n", |
| 31 | + " nn.Linear(np.prod(latent_shape) + 10, 256),\n", |
| 32 | + " nn.LeakyReLU(0.2),\n", |
| 33 | + " nn.Linear(256, 512),\n", |
| 34 | + " nn.LeakyReLU(0.2),\n", |
| 35 | + " nn.Linear(512, 1024),\n", |
| 36 | + " nn.LeakyReLU(0.2),\n", |
| 37 | + " nn.Linear(1024, np.prod(img_shape)),\n", |
| 38 | + " nn.Tanh()\n", |
| 39 | + " )\n", |
| 40 | + " def forward(self, x, label):\n", |
| 41 | + " batch_size = x.shape[0]\n", |
| 42 | + " # generator now uses the latent input noise x and a one hot encoded label for conditioning to generate a fake digit\n", |
| 43 | + " x = self.flatten(x)\n", |
| 44 | + " x = torch.cat([x, label], dim=1)\n", |
| 45 | + " # reshape into a image\n", |
| 46 | + " return self.mlp(x).reshape(batch_size, 1, *self.img_shape)" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": null, |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "class Discriminator(nn.Module):\n", |
| 56 | + " def __init__(self, img_shape):\n", |
| 57 | + " super(Discriminator, self).__init__()\n", |
| 58 | + "\n", |
| 59 | + " self.mlp = nn.Sequential(\n", |
| 60 | + " nn.Flatten(),\n", |
| 61 | + " nn.Linear(np.prod(img_shape), 1024),\n", |
| 62 | + " nn.LeakyReLU(0.2),\n", |
| 63 | + " nn.Linear(1024, 512),\n", |
| 64 | + " nn.LeakyReLU(0.2),\n", |
| 65 | + " nn.Linear(512, 256),\n", |
| 66 | + " nn.LeakyReLU(0.2),\n", |
| 67 | + " nn.Linear(256, 1),\n", |
| 68 | + " nn.Sigmoid()\n", |
| 69 | + " )\n", |
| 70 | + " def forward(self, x):\n", |
| 71 | + " return self.mlp(x)" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": null, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "# load our data\n", |
| 81 | + "latent_shape = (28, 28)\n", |
| 82 | + "img_shape = (28, 28)\n", |
| 83 | + "batch_size = 64\n", |
| 84 | + "\n", |
| 85 | + "transform = transforms.Compose([\n", |
| 86 | + " transforms.ToTensor(),\n", |
| 87 | + " transforms.Normalize(mean=(0.5), std=(0.5))])\n", |
| 88 | + "train_dataset = torchvision.datasets.MNIST(root=\"./data\", train = True, download=True, transform=transform)der(train_dataset, batch_size=batch_size, shuffle=True)" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": null, |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [], |
| 96 | + "source": [ |
| 97 | + "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # for gpu usage if possible\n", |
| 98 | + "\n", |
| 99 | + "generator = Generator(latent_shape, img_shape)\n", |
| 100 | + "discriminator = Discriminator(img_shape)\n", |
| 101 | + "\n", |
| 102 | + "gen_optim = torch.optim.Adam(generator.parameters(), lr=2e-4)\n", |
| 103 | + "disc_optim = torch.optim.Adam(discriminator.parameters(), lr=2e-4)\n", |
| 104 | + "\n", |
| 105 | + "# use gpu if possible\n", |
| 106 | + "generator = generator.to(device)\n", |
| 107 | + "discriminator = discriminator.to(device)" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "def train(generator, discriminator, generator_optim: torch.optim, discriminator_optim: torch.optim, epochs=100):\n", |
| 117 | + " adversarial_loss = torch.nn.BCELoss()\n", |
| 118 | + " \n", |
| 119 | + " for epoch in range(1, epochs+1):\n", |
| 120 | + " print(\"Epoch {}\".format(epoch))\n", |
| 121 | + " avg_g_loss = 0\n", |
| 122 | + " avg_d_loss = 0\n", |
| 123 | + " pbar = notebook.tqdm(train_dataloader, total=len(train_dataloader))\n", |
| 124 | + " i = 0\n", |
| 125 | + " for data in pbar:\n", |
| 126 | + " i += 1\n", |
| 127 | + " real_images = data[0].to(device)\n", |
| 128 | + " labels = data[1].to(device)\n", |
| 129 | + "\n", |
| 130 | + " one_hot_labels = torch.zeros((len(labels), 10)).to(device)\n", |
| 131 | + " for j in range(len(labels)):\n", |
| 132 | + " one_hot_labels[j][labels[j]] = 1\n", |
| 133 | + "\n", |
| 134 | + " ### Train Generator ###\n", |
| 135 | + " \n", |
| 136 | + " generator_optim.zero_grad()\n", |
| 137 | + " \n", |
| 138 | + " latent_input = torch.randn((len(real_images), 1, *latent_shape)).to(device)\n", |
| 139 | + "\n", |
| 140 | + " fake_images = generator(latent_input, one_hot_labels)\n", |
| 141 | + "\n", |
| 142 | + " fake_res = discriminator(fake_images)\n", |
| 143 | + " \n", |
| 144 | + " generator_loss = adversarial_loss(fake_res, torch.ones_like(fake_res))\n", |
| 145 | + " generator_loss.backward()\n", |
| 146 | + " generator_optim.step()\n", |
| 147 | + " \n", |
| 148 | + " ### Train Discriminator ###\n", |
| 149 | + " discriminator_optim.zero_grad()\n", |
| 150 | + " \n", |
| 151 | + " real_res = discriminator(real_images)\n", |
| 152 | + "\n", |
| 153 | + " fake_res = discriminator(fake_images.detach())\n", |
| 154 | + "\n", |
| 155 | + " discriminator_real_loss = adversarial_loss(real_res, torch.ones_like(real_res))\n", |
| 156 | + " discriminator_fake_loss = adversarial_loss(fake_res, torch.zeros_like(fake_res))\n", |
| 157 | + " discriminator_loss = (discriminator_real_loss + discriminator_fake_loss) / 2\n", |
| 158 | + " discriminator_loss.backward()\n", |
| 159 | + " discriminator_optim.step()\n", |
| 160 | + " \n", |
| 161 | + "\n", |
| 162 | + " avg_g_loss += generator_loss.item()\n", |
| 163 | + " avg_d_loss += discriminator_loss.item()\n", |
| 164 | + " pbar.set_postfix({\"G_loss\": generator_loss.item(), \"D_loss\": discriminator_loss.item()})\n", |
| 165 | + " print(\"Avg G_loss {} - Avg D_loss {}\".format(avg_g_loss / i, avg_d_loss / i))" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": null, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "# train our generator and discriminator\n", |
| 175 | + "# Note: don't always expect loss to go down simultaneously for both models. They are competing against each other! So sometimes one model \n", |
| 176 | + "# may perform better than the other\n", |
| 177 | + "train(generator=generator, discriminator=discriminator, generator_optim=gen_optim, discriminator_optim=disc_optim)" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "# test it out!\n", |
| 187 | + "latent_input = torch.randn((batch_size, 1, *latent_shape))\n", |
| 188 | + "\n", |
| 189 | + "# generate one hot encoded labels\n", |
| 190 | + "labels = torch.zeros((batch_size))\n", |
| 191 | + "one_hot_labels = torch.zeros((batch_size, 10))\n", |
| 192 | + "one_hot_labels[torch.arange(batch_size), labels] = 1\n", |
| 193 | + "\n", |
| 194 | + "test = generator(latent_input.to(device), one_hot_labels)" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": null, |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [], |
| 202 | + "source": [ |
| 203 | + "k = 0\n", |
| 204 | + "plt.title(\"Generating a fake {} digit\".format(one_hot_labels[k]))\n", |
| 205 | + "plt.imshow(test[k].reshape(28, 28).cpu().detach().numpy())" |
| 206 | + ] |
| 207 | + } |
| 208 | + ], |
| 209 | + "metadata": { |
| 210 | + "kernelspec": { |
| 211 | + "display_name": "Python 3", |
| 212 | + "language": "python", |
| 213 | + "name": "python3" |
| 214 | + }, |
| 215 | + "language_info": { |
| 216 | + "codemirror_mode": { |
| 217 | + "name": "ipython", |
| 218 | + "version": 3 |
| 219 | + }, |
| 220 | + "file_extension": ".py", |
| 221 | + "mimetype": "text/x-python", |
| 222 | + "name": "python", |
| 223 | + "nbconvert_exporter": "python", |
| 224 | + "pygments_lexer": "ipython3", |
| 225 | + "version": "3.8.5" |
| 226 | + } |
| 227 | + }, |
| 228 | + "nbformat": 4, |
| 229 | + "nbformat_minor": 2 |
| 230 | +} |
0 commit comments