|
| 1 | +import pandas |
| 2 | +import argparse |
| 3 | +import logging |
| 4 | +import pathlib |
| 5 | + |
| 6 | + |
| 7 | +log = logging.getLogger("event_trimmer") |
| 8 | + |
| 9 | + |
| 10 | +def main(): |
| 11 | + parser = argparse.ArgumentParser() |
| 12 | + |
| 13 | + parser.add_argument( |
| 14 | + "input", |
| 15 | + type=pathlib.Path, |
| 16 | + help="input event directory", |
| 17 | + ) |
| 18 | + |
| 19 | + parser.add_argument( |
| 20 | + "output", |
| 21 | + type=pathlib.Path, |
| 22 | + help="output event directory", |
| 23 | + ) |
| 24 | + |
| 25 | + parser.add_argument( |
| 26 | + "-i", "--event-id", help="event ID in input directory", default=0, type=int |
| 27 | + ) |
| 28 | + |
| 29 | + parser.add_argument( |
| 30 | + "-p", |
| 31 | + "--particle-id", |
| 32 | + help="particle ID to filter", |
| 33 | + type=int, |
| 34 | + required=True, |
| 35 | + action="append", |
| 36 | + ) |
| 37 | + |
| 38 | + args = parser.parse_args() |
| 39 | + |
| 40 | + logging.basicConfig( |
| 41 | + level=logging.INFO, |
| 42 | + format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", |
| 43 | + ) |
| 44 | + |
| 45 | + to_keep = args.particle_id |
| 46 | + |
| 47 | + log.info( |
| 48 | + "Keeping %d particles: %s", len(to_keep), ", ".join(str(x) for x in to_keep) |
| 49 | + ) |
| 50 | + |
| 51 | + origin_event_prefix = "event%09d-" % args.event_id |
| 52 | + destination_event_prefix = "event%09d-" % 0 |
| 53 | + |
| 54 | + # Logic for processing the particle initial states |
| 55 | + origin_particles_initial_file = args.input / ( |
| 56 | + origin_event_prefix + "particles_initial.csv" |
| 57 | + ) |
| 58 | + particles_initial_df = pandas.read_csv(origin_particles_initial_file) |
| 59 | + log.info( |
| 60 | + "Read data for %d initial input particles from %s", |
| 61 | + particles_initial_df.shape[0], |
| 62 | + origin_particles_initial_file, |
| 63 | + ) |
| 64 | + filtered_particles_initial_df = particles_initial_df[ |
| 65 | + particles_initial_df["particle_id"].isin(to_keep) |
| 66 | + ] |
| 67 | + destination_particles_initial_file = args.output / ( |
| 68 | + destination_event_prefix + "particles_initial.csv" |
| 69 | + ) |
| 70 | + filtered_particles_initial_df.to_csv( |
| 71 | + destination_particles_initial_file, index=False |
| 72 | + ) |
| 73 | + log.info( |
| 74 | + "Wrote data for %d initial output particles to %s", |
| 75 | + filtered_particles_initial_df.shape[0], |
| 76 | + destination_particles_initial_file, |
| 77 | + ) |
| 78 | + |
| 79 | + # Logic for processing the particle final states |
| 80 | + origin_particles_final_file = args.input / ( |
| 81 | + origin_event_prefix + "particles_final.csv" |
| 82 | + ) |
| 83 | + particles_final_df = pandas.read_csv(origin_particles_final_file) |
| 84 | + log.info( |
| 85 | + "Read data for %d final input particles from %s", |
| 86 | + particles_final_df.shape[0], |
| 87 | + origin_particles_final_file, |
| 88 | + ) |
| 89 | + filtered_particles_final_df = particles_final_df[ |
| 90 | + particles_final_df["particle_id"].isin(to_keep) |
| 91 | + ] |
| 92 | + destination_particles_final_file = args.output / ( |
| 93 | + destination_event_prefix + "particles_final.csv" |
| 94 | + ) |
| 95 | + filtered_particles_final_df.to_csv(destination_particles_final_file, index=False) |
| 96 | + log.info( |
| 97 | + "Wrote data for %d final output particles to %s", |
| 98 | + filtered_particles_final_df.shape[0], |
| 99 | + destination_particles_final_file, |
| 100 | + ) |
| 101 | + |
| 102 | + # Logic for processing hits |
| 103 | + origin_hits_file = args.input / (origin_event_prefix + "hits.csv") |
| 104 | + hits_df = pandas.read_csv(origin_hits_file) |
| 105 | + log.info("Read data for %d input hits from %s", hits_df.shape[0], origin_hits_file) |
| 106 | + hits_filtered_df = hits_df[hits_df["particle_id"].isin(to_keep)] |
| 107 | + destination_hits_file = args.output / (destination_event_prefix + "hits.csv") |
| 108 | + hits_filtered_df.to_csv(destination_hits_file, index=False) |
| 109 | + log.info( |
| 110 | + "Wrote data for %d output hits to %s", |
| 111 | + hits_filtered_df.shape[0], |
| 112 | + destination_hits_file, |
| 113 | + ) |
| 114 | + |
| 115 | + # Logic for processing measurements |
| 116 | + origin_measurements_file = args.input / (origin_event_prefix + "measurements.csv") |
| 117 | + measurements_df = pandas.read_csv(origin_measurements_file) |
| 118 | + log.info( |
| 119 | + "Read data for %d input measurements from %s", |
| 120 | + measurements_df.shape[0], |
| 121 | + origin_measurements_file, |
| 122 | + ) |
| 123 | + measurements_filtered_df = measurements_df[hits_df["particle_id"].isin(to_keep)] |
| 124 | + measurement_ids = list(measurements_filtered_df.index) |
| 125 | + meas_id_map = {a: b for (b, a) in enumerate(measurement_ids)} |
| 126 | + measurements_df["measurement_id"] = measurements_df["measurement_id"].apply( |
| 127 | + lambda x: meas_id_map.get(x, -1) |
| 128 | + ) |
| 129 | + measurements_filtered_df = measurements_df[hits_df["particle_id"].isin(to_keep)] |
| 130 | + destination_measurements_file = args.output / ( |
| 131 | + destination_event_prefix + "measurements.csv" |
| 132 | + ) |
| 133 | + measurements_filtered_df.to_csv(destination_measurements_file, index=False) |
| 134 | + log.info( |
| 135 | + "Wrote data for %d output measurements to %s", |
| 136 | + measurements_filtered_df.shape[0], |
| 137 | + destination_measurements_file, |
| 138 | + ) |
| 139 | + |
| 140 | + # Logic for building the simhit map |
| 141 | + new_df = pandas.DataFrame( |
| 142 | + { |
| 143 | + "measurement_id": list(range(measurements_filtered_df.shape[0])), |
| 144 | + "hit_id": list(range(measurements_filtered_df.shape[0])), |
| 145 | + } |
| 146 | + ) |
| 147 | + destination_simhit_map_file = args.output / ( |
| 148 | + destination_event_prefix + "measurement-simhit-map.csv" |
| 149 | + ) |
| 150 | + new_df.to_csv(destination_simhit_map_file, index=False) |
| 151 | + log.info( |
| 152 | + "Wrote data for %d output measurement-to-hit mappings to %s", |
| 153 | + new_df.shape[0], |
| 154 | + destination_simhit_map_file, |
| 155 | + ) |
| 156 | + |
| 157 | + # Logic for processing cells |
| 158 | + origin_cells_file = args.input / (origin_event_prefix + "cells.csv") |
| 159 | + cells_df = pandas.read_csv(origin_cells_file) |
| 160 | + log.info( |
| 161 | + "Read data for %d input cells from %s", cells_df.shape[0], origin_cells_file |
| 162 | + ) |
| 163 | + filter = cells_df["measurement_id"].isin(measurement_ids) |
| 164 | + cells_df["measurement_id"] = cells_df["measurement_id"].apply( |
| 165 | + lambda x: meas_id_map.get(x, -1) |
| 166 | + ) |
| 167 | + cells_filtered_df = cells_df[filter] |
| 168 | + destination_cells_file = args.output / (destination_event_prefix + "cells.csv") |
| 169 | + cells_filtered_df.to_csv(destination_cells_file, index=False) |
| 170 | + log.info( |
| 171 | + "Wrote data for %d output cells to %s", |
| 172 | + cells_filtered_df.shape[0], |
| 173 | + destination_cells_file, |
| 174 | + ) |
| 175 | + |
| 176 | + |
| 177 | +if __name__ == "__main__": |
| 178 | + main() |
0 commit comments