|
| 1 | +/** TRACCC library, part of the ACTS project (R&D line) |
| 2 | + * |
| 3 | + * (c) 2023-2025 CERN for the benefit of the ACTS project |
| 4 | + * |
| 5 | + * Mozilla Public License Version 2.0 |
| 6 | + */ |
| 7 | + |
| 8 | +// Project include(s). |
| 9 | +#include "traccc/cuda/fitting/fitting_algorithm.hpp" |
| 10 | +#include "traccc/cuda/utils/stream.hpp" |
| 11 | +#include "traccc/definitions/common.hpp" |
| 12 | +#include "traccc/definitions/primitives.hpp" |
| 13 | +#include "traccc/device/container_d2h_copy_alg.hpp" |
| 14 | +#include "traccc/device/container_h2d_copy_alg.hpp" |
| 15 | +#include "traccc/fitting/kalman_filter/kalman_fitter.hpp" |
| 16 | +#include "traccc/fitting/kalman_fitting_algorithm.hpp" |
| 17 | +#include "traccc/geometry/detector.hpp" |
| 18 | +#include "traccc/io/read_geometry.hpp" |
| 19 | +#include "traccc/io/read_measurements.hpp" |
| 20 | +#include "traccc/io/utils.hpp" |
| 21 | +#include "traccc/options/accelerator.hpp" |
| 22 | +#include "traccc/options/detector.hpp" |
| 23 | +#include "traccc/options/input_data.hpp" |
| 24 | +#include "traccc/options/performance.hpp" |
| 25 | +#include "traccc/options/program_options.hpp" |
| 26 | +#include "traccc/options/track_fitting.hpp" |
| 27 | +#include "traccc/options/track_propagation.hpp" |
| 28 | +#include "traccc/performance/collection_comparator.hpp" |
| 29 | +#include "traccc/performance/container_comparator.hpp" |
| 30 | +#include "traccc/performance/timer.hpp" |
| 31 | +#include "traccc/resolution/fitting_performance_writer.hpp" |
| 32 | +#include "traccc/utils/bfield.hpp" |
| 33 | +#include "traccc/utils/propagation.hpp" |
| 34 | +#include "traccc/utils/seed_generator.hpp" |
| 35 | + |
| 36 | +// Detray include(s). |
| 37 | +#include <detray/core/detail/alignment.hpp> |
| 38 | +#include <detray/io/frontend/detector_reader.hpp> |
| 39 | + |
| 40 | +// VecMem include(s). |
| 41 | +#include <vecmem/memory/cuda/device_memory_resource.hpp> |
| 42 | +#include <vecmem/memory/cuda/host_memory_resource.hpp> |
| 43 | +#include <vecmem/memory/cuda/managed_memory_resource.hpp> |
| 44 | +#include <vecmem/memory/host_memory_resource.hpp> |
| 45 | +#include <vecmem/utils/cuda/async_copy.hpp> |
| 46 | +#include <vecmem/utils/cuda/copy.hpp> |
| 47 | + |
| 48 | +// System include(s). |
| 49 | +#include <cstdlib> |
| 50 | +#include <exception> |
| 51 | +#include <iomanip> |
| 52 | +#include <iostream> |
| 53 | + |
| 54 | +using namespace traccc; |
| 55 | + |
| 56 | +// The main routine |
| 57 | +// |
| 58 | +int main(int argc, char* argv[]) { |
| 59 | + std::unique_ptr<const traccc::Logger> ilogger = |
| 60 | + traccc::getDefaultLogger("TracccExampleMisalignedTruthFittingCuda", |
| 61 | + traccc::Logging::Level::INFO); |
| 62 | + TRACCC_LOCAL_LOGGER(std::move(ilogger)); |
| 63 | + |
| 64 | + // Program options. |
| 65 | + traccc::opts::detector detector_opts; |
| 66 | + traccc::opts::input_data input_opts; |
| 67 | + traccc::opts::track_propagation propagation_opts; |
| 68 | + traccc::opts::track_fitting fitting_opts; |
| 69 | + traccc::opts::performance performance_opts; |
| 70 | + traccc::opts::accelerator accelerator_opts; |
| 71 | + traccc::opts::program_options program_opts{ |
| 72 | + "Misaligned Truth Track Fitting Using CUDA", |
| 73 | + {detector_opts, input_opts, propagation_opts, performance_opts, |
| 74 | + accelerator_opts}, |
| 75 | + argc, |
| 76 | + argv, |
| 77 | + logger().cloneWithSuffix("Options")}; |
| 78 | + |
| 79 | + /// Type declarations |
| 80 | + using host_detector_type = traccc::default_detector::host; |
| 81 | + using device_detector_type = traccc::default_detector::device; |
| 82 | + |
| 83 | + using scalar_type = device_detector_type::scalar_type; |
| 84 | + using b_field_t = |
| 85 | + covfie::field<traccc::const_bfield_backend_t<scalar_type>>; |
| 86 | + using rk_stepper_type = |
| 87 | + detray::rk_stepper<b_field_t::view_t, traccc::default_algebra, |
| 88 | + detray::constrained_step<scalar_type>>; |
| 89 | + using device_navigator_type = detray::navigator<const device_detector_type>; |
| 90 | + using device_fitter_type = |
| 91 | + traccc::kalman_fitter<rk_stepper_type, device_navigator_type>; |
| 92 | + |
| 93 | + // Memory resources used by the application. |
| 94 | + vecmem::host_memory_resource host_mr; |
| 95 | + vecmem::cuda::host_memory_resource cuda_host_mr; |
| 96 | + vecmem::cuda::managed_memory_resource mng_mr; |
| 97 | + vecmem::cuda::device_memory_resource device_mr; |
| 98 | + vecmem::cuda::copy cuda_cpy; |
| 99 | + traccc::memory_resource mr{device_mr, &cuda_host_mr}; |
| 100 | + |
| 101 | + // Performance writer |
| 102 | + traccc::fitting_performance_writer fit_performance_writer( |
| 103 | + traccc::fitting_performance_writer::config{}, |
| 104 | + logger().clone("FittingPerformanceWriter")); |
| 105 | + |
| 106 | + // Output Stats |
| 107 | + std::size_t n_fitted_tracks = 0; |
| 108 | + std::size_t n_fitted_tracks_cuda = 0; |
| 109 | + |
| 110 | + /***************************** |
| 111 | + * Build a geometry |
| 112 | + *****************************/ |
| 113 | + |
| 114 | + // B field value and its type |
| 115 | + // @TODO: Set B field as argument |
| 116 | + const traccc::vector3 B{0, 0, 2 * traccc::unit<traccc::scalar>::T}; |
| 117 | + auto field = traccc::construct_const_bfield<traccc::scalar>(B); |
| 118 | + |
| 119 | + // Read the detector |
| 120 | + detray::io::detector_reader_config reader_cfg{}; |
| 121 | + reader_cfg.add_file( |
| 122 | + traccc::io::get_absolute_path(detector_opts.detector_file)); |
| 123 | + if (!detector_opts.material_file.empty()) { |
| 124 | + reader_cfg.add_file( |
| 125 | + traccc::io::get_absolute_path(detector_opts.material_file)); |
| 126 | + } |
| 127 | + if (!detector_opts.grid_file.empty()) { |
| 128 | + reader_cfg.add_file( |
| 129 | + traccc::io::get_absolute_path(detector_opts.grid_file)); |
| 130 | + } |
| 131 | + auto [host_det, names] = |
| 132 | + detray::io::read_detector<host_detector_type>(host_mr, reader_cfg); |
| 133 | + |
| 134 | + // Copy detector to the device |
| 135 | + auto det_buff_static = detray::get_buffer(host_det, device_mr, cuda_cpy); |
| 136 | + |
| 137 | + // Detector view object |
| 138 | + auto det_view_static = detray::get_data(det_buff_static); |
| 139 | + |
| 140 | + /// Create a "misaligned" context |
| 141 | + using xf_container = host_detector_type::transform_container; |
| 142 | + xf_container tf_store_aligned_host; |
| 143 | + tf_store_aligned_host.reserve( |
| 144 | + host_det.transform_store().size(), |
| 145 | + typename host_detector_type::transform_container::context_type{}); |
| 146 | + for (const auto& tf : host_det.transform_store()) { |
| 147 | + tf_store_aligned_host.push_back(tf); |
| 148 | + } |
| 149 | + |
| 150 | + // Copy the vector of "misaligned" transforms to the device |
| 151 | + auto tf_buff_aligned = detray::get_buffer( |
| 152 | + tf_store_aligned_host, device_mr, cuda_cpy, detray::copy::sync, |
| 153 | + vecmem::data::buffer_type::fixed_size); |
| 154 | + |
| 155 | + // Get the view of the "misaligned" detector using the vector of |
| 156 | + // "misaligned" transforms and the static part of the detector copied to the |
| 157 | + // device earlier |
| 158 | + auto det_view_aligned = |
| 159 | + detray::detail::misaligned_detector_view<host_detector_type>( |
| 160 | + det_buff_static, tf_buff_aligned); |
| 161 | + |
| 162 | + /***************************** |
| 163 | + * Do the reconstruction |
| 164 | + *****************************/ |
| 165 | + |
| 166 | + // Stream object |
| 167 | + traccc::cuda::stream stream; |
| 168 | + |
| 169 | + // Copy object |
| 170 | + vecmem::copy host_copy; |
| 171 | + vecmem::cuda::async_copy async_copy{stream.cudaStream()}; |
| 172 | + |
| 173 | + traccc::device::container_d2h_copy_alg<traccc::track_state_container_types> |
| 174 | + track_state_d2h{mr, async_copy, logger().clone("TrackStateD2HCopyAlg")}; |
| 175 | + |
| 176 | + /// Standard deviations for seed track parameters |
| 177 | + static constexpr std::array<scalar, e_bound_size> stddevs = { |
| 178 | + 0.03f * traccc::unit<scalar>::mm, |
| 179 | + 0.03f * traccc::unit<scalar>::mm, |
| 180 | + 0.017f, |
| 181 | + 0.017f, |
| 182 | + 0.001f / traccc::unit<scalar>::GeV, |
| 183 | + 1.f * traccc::unit<scalar>::ns}; |
| 184 | + |
| 185 | + // Fitting algorithm object |
| 186 | + traccc::fitting_config fit_cfg(fitting_opts); |
| 187 | + fit_cfg.propagation = propagation_opts; |
| 188 | + |
| 189 | + traccc::host::kalman_fitting_algorithm host_fitting( |
| 190 | + fit_cfg, host_mr, host_copy, logger().clone("HostFittingAlg")); |
| 191 | + traccc::cuda::fitting_algorithm<device_fitter_type> device_fitting( |
| 192 | + fit_cfg, mr, async_copy, stream, logger().clone("CudaFittingAlg")); |
| 193 | + |
| 194 | + // Seed generator |
| 195 | + traccc::seed_generator<host_detector_type> sg(host_det, stddevs); |
| 196 | + |
| 197 | + traccc::performance::timing_info elapsedTimes; |
| 198 | + |
| 199 | + // Iterate over events |
| 200 | + for (std::size_t event = input_opts.skip; |
| 201 | + event < input_opts.events + input_opts.skip; ++event) { |
| 202 | + |
| 203 | + // Truth Track Candidates |
| 204 | + traccc::event_data evt_data(input_opts.directory, event, host_mr, |
| 205 | + input_opts.use_acts_geom_source, &host_det, |
| 206 | + input_opts.format, false); |
| 207 | + |
| 208 | + traccc::edm::track_candidate_container<traccc::default_algebra>::host |
| 209 | + truth_track_candidates{host_mr}; |
| 210 | + evt_data.generate_truth_candidates(truth_track_candidates, sg, host_mr); |
| 211 | + |
| 212 | + // track candidates buffer |
| 213 | + traccc::edm::track_candidate_container<traccc::default_algebra>::buffer |
| 214 | + truth_track_candidates_buffer{ |
| 215 | + async_copy.to(vecmem::get_data(truth_track_candidates.tracks), |
| 216 | + mr.main, mr.host, |
| 217 | + vecmem::copy::type::host_to_device), |
| 218 | + async_copy.to( |
| 219 | + vecmem::get_data(truth_track_candidates.measurements), |
| 220 | + mr.main, vecmem::copy::type::host_to_device)}; |
| 221 | + |
| 222 | + // Instantiate cuda containers/collections |
| 223 | + traccc::track_state_container_types::buffer track_states_cuda_buffer{ |
| 224 | + {{}, *(mr.host)}, {{}, *(mr.host), mr.host}}; |
| 225 | + |
| 226 | + // Run fitting |
| 227 | + { |
| 228 | + traccc::performance::timer t("Track fitting (cuda)", elapsedTimes); |
| 229 | + |
| 230 | + // For the first half of events use the static detector view |
| 231 | + // For the second half of events switch to the "misaligned" detector |
| 232 | + // view |
| 233 | + bool firstHalf = |
| 234 | + ((event - input_opts.skip) / (input_opts.events / 2) == 0); |
| 235 | + track_states_cuda_buffer = device_fitting( |
| 236 | + (firstHalf ? det_view_static : det_view_aligned), field, |
| 237 | + {truth_track_candidates_buffer.tracks, |
| 238 | + truth_track_candidates_buffer.measurements}); |
| 239 | + } |
| 240 | + |
| 241 | + traccc::track_state_container_types::host track_states_cuda = |
| 242 | + track_state_d2h(track_states_cuda_buffer); |
| 243 | + |
| 244 | + // CPU container(s) |
| 245 | + traccc::host::kalman_fitting_algorithm::output_type track_states; |
| 246 | + |
| 247 | + if (accelerator_opts.compare_with_cpu) { |
| 248 | + |
| 249 | + { |
| 250 | + traccc::performance::timer t("Track fitting (cpu)", |
| 251 | + elapsedTimes); |
| 252 | + |
| 253 | + // Run fitting |
| 254 | + track_states = host_fitting( |
| 255 | + host_det, field, |
| 256 | + {vecmem::get_data(truth_track_candidates.tracks), |
| 257 | + vecmem::get_data(truth_track_candidates.measurements)}); |
| 258 | + } |
| 259 | + } |
| 260 | + |
| 261 | + if (accelerator_opts.compare_with_cpu) { |
| 262 | + // Show which event we are currently presenting the results for. |
| 263 | + std::cout << "===>>> Event " << event << " <<<===" << std::endl; |
| 264 | + |
| 265 | + // Compare the track parameters made on the host and on the device. |
| 266 | + traccc::collection_comparator< |
| 267 | + traccc::fitting_result<traccc::default_algebra>> |
| 268 | + compare_fitting_results{"fitted tracks"}; |
| 269 | + compare_fitting_results( |
| 270 | + vecmem::get_data(track_states.get_headers()), |
| 271 | + vecmem::get_data(track_states_cuda.get_headers())); |
| 272 | + } |
| 273 | + |
| 274 | + // Statistics |
| 275 | + n_fitted_tracks += track_states.size(); |
| 276 | + n_fitted_tracks_cuda += track_states_cuda.size(); |
| 277 | + |
| 278 | + if (performance_opts.run) { |
| 279 | + for (unsigned int i = 0; i < track_states_cuda.size(); i++) { |
| 280 | + const auto& trk_states_per_track = |
| 281 | + track_states_cuda.at(i).items; |
| 282 | + |
| 283 | + const auto& fit_res = track_states_cuda[i].header; |
| 284 | + |
| 285 | + fit_performance_writer.write(trk_states_per_track, fit_res, |
| 286 | + host_det, evt_data); |
| 287 | + } |
| 288 | + } |
| 289 | + } |
| 290 | + |
| 291 | + if (performance_opts.run) { |
| 292 | + fit_performance_writer.finalize(); |
| 293 | + } |
| 294 | + |
| 295 | + std::cout << "==> Statistics ... " << std::endl; |
| 296 | + std::cout << "- created (cuda) " << n_fitted_tracks_cuda << " fitted tracks" |
| 297 | + << std::endl; |
| 298 | + std::cout << "- created (cpu) " << n_fitted_tracks << " fitted tracks" |
| 299 | + << std::endl; |
| 300 | + std::cout << "==>Elapsed times...\n" << elapsedTimes << std::endl; |
| 301 | + |
| 302 | + return EXIT_SUCCESS; |
| 303 | +} |
0 commit comments