You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -171,7 +171,7 @@ The ADAPT library proposes numerous transfer algorithms and it can be hard to kn
171
171
172
172
## Quick Start
173
173
174
-
Here is a simple usage example of the ADAPT library. This is a simulation of a 1D sample bias problem with binary classfication task. The source input data are distributed according to a Gaussian distribution centered in -1 with standard deviation of 2. The target data are drawn from Gaussian distribution centered in 1 with standard deviation of 2. The output labels are equal to 1 in the interval [-1, 1] and 0 elsewhere.
174
+
Here is a simple usage example of the ADAPT library. This is a simulation of a 1D sample bias problem with binary classfication task. The source input data are distributed according to a Gaussian distribution centered in -1 with standard deviation of 2. The target data are drawn from Gaussian distribution centered in 1 with standard deviation of 2. The output labels are equal to 1 in the interval [-1, 1] and 0 elsewhere. We apply the transfer method [KMM](https://adapt-python.github.io/adapt/generated/adapt.instance_based.KMM.html) which is an unsupervised instance-based algortihm.
0 commit comments