8383< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.RegularTransferLC.html "> RegularTransferLC</ a > </ li >
8484< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.RegularTransferNN.html "> RegularTransferNN</ a > </ li >
8585< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.FineTuning.html "> FineTuning</ a > </ li >
86+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.TransferTreeClassifier.html "> TransferTreeClassifier</ a > </ li >
8687</ ul >
8788</ li >
8889< li class ="toctree-l1 "> < a class ="reference internal " href ="#adapt-metrics "> Metrics</ a > < ul >
8990< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.make_uda_scorer.html "> make_uda_scorer</ a > </ li >
9091< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.cov_distance.html "> cov_distance</ a > </ li >
91- < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.j_score .html "> j_score </ a > </ li >
92+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.neg_j_score .html "> neg_j_score </ a > </ li >
9293< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.linear_discrepancy.html "> linear_discrepancy</ a > </ li >
9394< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.normalized_linear_discrepancy.html "> normalized_linear_discrepancy</ a > </ li >
9495< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.frechet_distance.html "> frechet_distance</ a > </ li >
9899</ ul >
99100</ li >
100101< li class ="toctree-l1 "> < a class ="reference internal " href ="#adapt-utils "> Utility Functions</ a > < ul >
102+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.UpdateLambda.html "> UpdateLambda</ a > </ li >
101103< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.accuracy.html "> accuracy</ a > </ li >
102104< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_arrays.html "> check_arrays</ a > </ li >
103105< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_estimator.html "> check_estimator</ a > </ li >
110112< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.make_regression_da.html "> make_regression_da</ a > </ li >
111113< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_sample_weight.html "> check_sample_weight</ a > </ li >
112114< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.set_random_seed.html "> set_random_seed</ a > </ li >
115+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_fitted_estimator.html "> check_fitted_estimator</ a > </ li >
116+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_fitted_network.html "> check_fitted_network</ a > </ li >
113117</ ul >
114118</ li >
115119</ ul >
@@ -372,6 +376,9 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
372376< tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.parameter_based.FineTuning.html#adapt.parameter_based.FineTuning " title ="adapt.parameter_based.FineTuning "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> parameter_based.FineTuning</ span > </ code > </ a > ([encoder, task, ...])</ p > </ td >
373377< td > < p > FineTuning : finetunes pretrained networks on target data.</ p > </ td >
374378</ tr >
379+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.parameter_based.TransferTreeClassifier.html#adapt.parameter_based.TransferTreeClassifier " title ="adapt.parameter_based.TransferTreeClassifier "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> parameter_based.TransferTreeClassifier</ span > </ code > </ a > ([...])</ p > </ td >
380+ < td > < p > TBA</ p > </ td >
381+ </ tr >
375382</ tbody >
376383</ table >
377384</ section >
@@ -390,7 +397,7 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
390397< tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.cov_distance.html#adapt.metrics.cov_distance " title ="adapt.metrics.cov_distance "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.cov_distance</ span > </ code > </ a > (Xs, Xt)</ p > </ td >
391398< td > < p > Compute the mean absolute difference between the covariance matrixes of Xs and Xt</ p > </ td >
392399</ tr >
393- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.j_score .html#adapt.metrics.j_score " title ="adapt.metrics.j_score "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.j_score </ span > </ code > </ a > (Xs, Xt[, max_centers, sigma])</ p > </ td >
400+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.neg_j_score .html#adapt.metrics.neg_j_score " title ="adapt.metrics.neg_j_score "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.neg_j_score </ span > </ code > </ a > (Xs, Xt[, max_centers, sigma])</ p > </ td >
394401< td > < p > Compute the negative J-score between Xs and Xt.</ p > </ td >
395402</ tr >
396403< tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.linear_discrepancy.html#adapt.metrics.linear_discrepancy " title ="adapt.metrics.linear_discrepancy "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.linear_discrepancy</ span > </ code > </ a > (Xs, Xt[, ...])</ p > </ td >
@@ -423,42 +430,51 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
423430< col style ="width: 90% " />
424431</ colgroup >
425432< tbody >
426- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.accuracy.html#adapt.utils.accuracy " title ="adapt.utils.accuracy "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.accuracy</ span > </ code > </ a > (y_true, y_pred)</ p > </ td >
433+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.UpdateLambda.html#adapt.utils.UpdateLambda " title ="adapt.utils.UpdateLambda "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.UpdateLambda</ span > </ code > </ a > ([lambda_init, ...])</ p > </ td >
434+ < td > < p > Update Lambda trade-off</ p > </ td >
435+ </ tr >
436+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.accuracy.html#adapt.utils.accuracy " title ="adapt.utils.accuracy "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.accuracy</ span > </ code > </ a > (y_true, y_pred)</ p > </ td >
427437< td > < p > Custom accuracy function which can handle probas vector in both binary and multi classification</ p > </ td >
428438</ tr >
429- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_arrays.html#adapt.utils.check_arrays " title ="adapt.utils.check_arrays "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_arrays</ span > </ code > </ a > (X, y)</ p > </ td >
439+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_arrays.html#adapt.utils.check_arrays " title ="adapt.utils.check_arrays "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_arrays</ span > </ code > </ a > (X, y)</ p > </ td >
430440< td > < p > Check arrays and reshape 1D array in 2D array of shape (-1, 1).</ p > </ td >
431441</ tr >
432- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_estimator.html#adapt.utils.check_estimator " title ="adapt.utils.check_estimator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_estimator</ span > </ code > </ a > ([estimator, copy, ...])</ p > </ td >
442+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_estimator.html#adapt.utils.check_estimator " title ="adapt.utils.check_estimator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_estimator</ span > </ code > </ a > ([estimator, copy, ...])</ p > </ td >
433443< td > < p > Check estimator.</ p > </ td >
434444</ tr >
435- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_network.html#adapt.utils.check_network " title ="adapt.utils.check_network "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_network</ span > </ code > </ a > (network[, copy, name, ...])</ p > </ td >
445+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_network.html#adapt.utils.check_network " title ="adapt.utils.check_network "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_network</ span > </ code > </ a > (network[, copy, name, ...])</ p > </ td >
436446< td > < p > Check if the given network is a tensorflow Model.</ p > </ td >
437447</ tr >
438- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_encoder.html#adapt.utils.get_default_encoder " title ="adapt.utils.get_default_encoder "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_encoder</ span > </ code > </ a > ([name])</ p > </ td >
448+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_encoder.html#adapt.utils.get_default_encoder " title ="adapt.utils.get_default_encoder "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_encoder</ span > </ code > </ a > ([name])</ p > </ td >
439449< td > < p > Return a tensorflow Model of one layer with 10 neurons and a relu activation.</ p > </ td >
440450</ tr >
441- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_task.html#adapt.utils.get_default_task " title ="adapt.utils.get_default_task "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_task</ span > </ code > </ a > ([activation, name])</ p > </ td >
451+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_task.html#adapt.utils.get_default_task " title ="adapt.utils.get_default_task "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_task</ span > </ code > </ a > ([activation, name])</ p > </ td >
442452< td > < p > Return a tensorflow Model of two hidden layers with 10 neurons each and relu activations.</ p > </ td >
443453</ tr >
444- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_discriminator.html#adapt.utils.get_default_discriminator " title ="adapt.utils.get_default_discriminator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_discriminator</ span > </ code > </ a > ([name])</ p > </ td >
454+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_discriminator.html#adapt.utils.get_default_discriminator " title ="adapt.utils.get_default_discriminator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_discriminator</ span > </ code > </ a > ([name])</ p > </ td >
445455< td > < p > Return a tensorflow Model of two hidden layers with 10 neurons each and relu activations.</ p > </ td >
446456</ tr >
447- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.GradientHandler.html#adapt.utils.GradientHandler " title ="adapt.utils.GradientHandler "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.GradientHandler</ span > </ code > </ a > (*args, **kwargs)</ p > </ td >
457+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.GradientHandler.html#adapt.utils.GradientHandler " title ="adapt.utils.GradientHandler "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.GradientHandler</ span > </ code > </ a > (*args, **kwargs)</ p > </ td >
448458< td > < p > Multiply gradients with a scalar during backpropagation.</ p > </ td >
449459</ tr >
450- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_classification_da.html#adapt.utils.make_classification_da " title ="adapt.utils.make_classification_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_classification_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
460+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_classification_da.html#adapt.utils.make_classification_da " title ="adapt.utils.make_classification_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_classification_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
451461< td > < p > Generate a classification dataset for DA.</ p > </ td >
452462</ tr >
453- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_regression_da.html#adapt.utils.make_regression_da " title ="adapt.utils.make_regression_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_regression_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
463+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_regression_da.html#adapt.utils.make_regression_da " title ="adapt.utils.make_regression_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_regression_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
454464< td > < p > Generate a regression dataset for DA.</ p > </ td >
455465</ tr >
456- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_sample_weight.html#adapt.utils.check_sample_weight " title ="adapt.utils.check_sample_weight "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_sample_weight</ span > </ code > </ a > (sample_weight, X)</ p > </ td >
466+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_sample_weight.html#adapt.utils.check_sample_weight " title ="adapt.utils.check_sample_weight "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_sample_weight</ span > </ code > </ a > (sample_weight, X)</ p > </ td >
457467< td > < p > Check sample weights.</ p > </ td >
458468</ tr >
459- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.set_random_seed.html#adapt.utils.set_random_seed " title ="adapt.utils.set_random_seed "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.set_random_seed</ span > </ code > </ a > (random_state)</ p > </ td >
469+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.set_random_seed.html#adapt.utils.set_random_seed " title ="adapt.utils.set_random_seed "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.set_random_seed</ span > </ code > </ a > (random_state)</ p > </ td >
460470< td > < p > Set random seed for numpy and Tensorflow</ p > </ td >
461471</ tr >
472+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_fitted_estimator.html#adapt.utils.check_fitted_estimator " title ="adapt.utils.check_fitted_estimator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_fitted_estimator</ span > </ code > </ a > (estimator)</ p > </ td >
473+ < td > < p > Check Fitted Estimator</ p > </ td >
474+ </ tr >
475+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_fitted_network.html#adapt.utils.check_fitted_network " title ="adapt.utils.check_fitted_network "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_fitted_network</ span > </ code > </ a > (estimator)</ p > </ td >
476+ < td > < p > Check Fitted Network</ p > </ td >
477+ </ tr >
462478</ tbody >
463479</ table >
464480</ section >
0 commit comments