Skip to content

Commit b1b1edd

Browse files
Update README.md
1 parent 7a409f4 commit b1b1edd

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -162,7 +162,7 @@ In the transfer learning framework, however, one assumes that the target data (o
162162
Thus, the transfer learning models from the ADAPT library can be seen as machine learning models that are fitted with a specific target in mind. This target is different but somewhat related to the training data. This is generally achieved by a transformation of the input features (see [feature-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-feature-based-feature-based-methods)) or by importance weighting (see [instance-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-instance-based)). In some cases, the training data are no more available but one aims at fine-tuning a pre-trained source model on a new target dataset (see [parameter-based transfer](https://adapt-python.github.io/adapt/contents.html#adapt-parameter-based)).
163163

164164

165-
## A guide to select the appropriate transfer algorithm
165+
## Navigate into ADAPT
166166

167167
The ADAPT library proposes numerous transfer algorithms and it can be hard to know which algorithm is best suited for a particular problem. If you do not know which algorithm to choose, this [flowchart](https://adapt-python.github.io/adapt/map.html) may help you:
168168

0 commit comments

Comments
 (0)